Malignant pleural mesothelioma (MPM) is an aggressive cancer associated with asbestos exposure. MPM pathogenesis has been related both to oxidative stress, evoked by and in response to asbestos fibers exposure, and epithelial mesenchymal transition (EMT), an event induced by oxidative stress itself and related to cancer proliferation and metastasis. Asbestos-related primary oxidative damage is counteracted in the lungs by various redox-sensitive factors, often hyperactivated in some cancers. Among these redox-sensitive factors, Apurinic-apyrimidinic endonuclease 1 (APE-1)/Redox effector factor 1 (Ref-1) has been demonstrated to be overexpressed in MPM and lung cancer, but the molecular mechanism has not yet been fully understood. Moreover, asbestos exposure has been associated with induced EMT events, via some EMT transcription factors, such as Twist, Zeb-1 and Snail-1, in possible crosstalk with oxidative stress and inflammation events. To demonstrate this hypothesis, we inhibited/silenced Ref-1 in MPM cells; as a consequence, both EMT (Twist, Zeb-1 and Snail-1) markers and cellular migration/proliferation were significantly inhibited. Taken as a whole, these results show, for the first time, crosstalk between oxidative stress and EMT in MPM carcinogenesis and invasiveness, thus improving the knowledge to better address a preventive and therapeutic approach against this aggressive cancer.

APE-1/Ref-1 Inhibition Blocks Malignant Pleural Mesothelioma Cell Proliferation and Migration: Crosstalk between Oxidative Stress and Epithelial Mesenchymal Transition (EMT) in Driving Carcinogenesis and Metastasis

Ramundo, Valeria;Palazzo, Maria Luisa;Riganti, Chiara;Aldieri, Elisabetta
2023-01-01

Abstract

Malignant pleural mesothelioma (MPM) is an aggressive cancer associated with asbestos exposure. MPM pathogenesis has been related both to oxidative stress, evoked by and in response to asbestos fibers exposure, and epithelial mesenchymal transition (EMT), an event induced by oxidative stress itself and related to cancer proliferation and metastasis. Asbestos-related primary oxidative damage is counteracted in the lungs by various redox-sensitive factors, often hyperactivated in some cancers. Among these redox-sensitive factors, Apurinic-apyrimidinic endonuclease 1 (APE-1)/Redox effector factor 1 (Ref-1) has been demonstrated to be overexpressed in MPM and lung cancer, but the molecular mechanism has not yet been fully understood. Moreover, asbestos exposure has been associated with induced EMT events, via some EMT transcription factors, such as Twist, Zeb-1 and Snail-1, in possible crosstalk with oxidative stress and inflammation events. To demonstrate this hypothesis, we inhibited/silenced Ref-1 in MPM cells; as a consequence, both EMT (Twist, Zeb-1 and Snail-1) markers and cellular migration/proliferation were significantly inhibited. Taken as a whole, these results show, for the first time, crosstalk between oxidative stress and EMT in MPM carcinogenesis and invasiveness, thus improving the knowledge to better address a preventive and therapeutic approach against this aggressive cancer.
2023
24
16
12570
12571
asbestos; epithelial mesenchymal transition; malignant pleural mesothelioma; oxidative stress; proliferation; redox-sensitive factors
Ramundo, Valeria; Zanirato, Giada; Palazzo, Maria Luisa; Riganti, Chiara; Aldieri, Elisabetta
File in questo prodotto:
File Dimensione Formato  
Ramundo, IJMS 2023.pdf

Accesso aperto

Descrizione: Ramundo, IJMS 2023
Tipo di file: PDF EDITORIALE
Dimensione 4.63 MB
Formato Adobe PDF
4.63 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1945411
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact