Extracellular vesicles (EVs) including plasma membrane-derived microvesicles and endosomal-derived exosomes aggregate by unknown mechanisms, forming microcalcifications that promote cardiovascular disease, the leading cause of death worldwide. Here, we show a framework for assessing cell-independent EV mechanisms in disease by suggesting that annexin A1 (ANXA1)-dependent tethering induces EV aggregation and microcalcification. We present single-EV microarray, a method to distinguish microvesicles from exosomes and assess heterogeneity at a single-EV level. Single-EV microarray and proteomics revealed increased ANXA1 primarily on aggregating and calcifying microvesicles. ANXA1 vesicle aggregation was suppressed by calcium chelation, altering pH, or ANXA1 neutralizing antibody. ANXA1 knockdown attenuated EV aggregation and microcalcification formation in human cardiovascular cells and acellular three-dimensional collagen hydrogels. Our findings explain why microcalcifications are more prone to form in vulnerable regions of plaque, regulating critical cardiovascular pathology, and likely extend to other EV-associated diseases, including autoimmune and neurodegenerative diseases and cancer.

Annexin A1-dependent tethering promotes extracellular vesicle aggregation revealed with single-extracellular vesicle analysis

Buffolo, Fabrizio;
2020-01-01

Abstract

Extracellular vesicles (EVs) including plasma membrane-derived microvesicles and endosomal-derived exosomes aggregate by unknown mechanisms, forming microcalcifications that promote cardiovascular disease, the leading cause of death worldwide. Here, we show a framework for assessing cell-independent EV mechanisms in disease by suggesting that annexin A1 (ANXA1)-dependent tethering induces EV aggregation and microcalcification. We present single-EV microarray, a method to distinguish microvesicles from exosomes and assess heterogeneity at a single-EV level. Single-EV microarray and proteomics revealed increased ANXA1 primarily on aggregating and calcifying microvesicles. ANXA1 vesicle aggregation was suppressed by calcium chelation, altering pH, or ANXA1 neutralizing antibody. ANXA1 knockdown attenuated EV aggregation and microcalcification formation in human cardiovascular cells and acellular three-dimensional collagen hydrogels. Our findings explain why microcalcifications are more prone to form in vulnerable regions of plaque, regulating critical cardiovascular pathology, and likely extend to other EV-associated diseases, including autoimmune and neurodegenerative diseases and cancer.
2020
6
38
1244
1258
Rogers, Maximillian A; Buffolo, Fabrizio; Schlotter, Florian; Atkins, Samantha K; Lee, Lang H; Halu, Arda; Blaser, Mark C; Tsolaki, Elena; Higashi, Hideyuki; Luther, Kristin; Daaboul, George; Bouten, Carlijn V C; Body, Simon C; Singh, Sasha A; Bertazzo, Sergio; Libby, Peter; Aikawa, Masanori; Aikawa, Elena
File in questo prodotto:
File Dimensione Formato  
Rogers MA, Scie Adv 2020 ANXA1 tethering.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 1.72 MB
Formato Adobe PDF
1.72 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1945511
Citazioni
  • ???jsp.display-item.citation.pmc??? 42
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 50
social impact