Gibbs sampling methods are standard tools to perform posterior inference for mixture models. These have been broadly classified into two categories: marginal and conditional methods. While conditional samplers are more widely applicable than marginal ones, they may suffer from slow mixing in infinite mixtures, where some form of truncation, either deterministic or random, is required. In mixtures with random number of components, the exploration of parameter spaces of different dimensions can also be challenging. We tackle these issues by expressing the mixture components in the random order of appearance in an exchangeable sequence directed by the mixing distribution. We derive a sampler that is straightforward to implement for mixing distributions with tractable size-biased ordered weights, and that can be readily adapted to mixture models for which marginal samplers are not available. In infinite mixtures, no form of truncation is necessary. As for finite mixtures with random dimension, a simple updating of the number of components is obtained by a blocking argument, thus, easing challenges found in transdimensional moves via Metropolis-Hastings steps. Additionally, sampling occurs in the space of ordered partitions with blocks labeled in the least element order, which endows the sampler with good mixing properties. The performance of the proposed algorithm is evaluated in a simulation study. Supplementary materials for this article are available online.

Gibbs sampling for mixtures in order of appearance: the ordered allocation sampler

Pierpaolo De Blasi;
2023-01-01

Abstract

Gibbs sampling methods are standard tools to perform posterior inference for mixture models. These have been broadly classified into two categories: marginal and conditional methods. While conditional samplers are more widely applicable than marginal ones, they may suffer from slow mixing in infinite mixtures, where some form of truncation, either deterministic or random, is required. In mixtures with random number of components, the exploration of parameter spaces of different dimensions can also be challenging. We tackle these issues by expressing the mixture components in the random order of appearance in an exchangeable sequence directed by the mixing distribution. We derive a sampler that is straightforward to implement for mixing distributions with tractable size-biased ordered weights, and that can be readily adapted to mixture models for which marginal samplers are not available. In infinite mixtures, no form of truncation is necessary. As for finite mixtures with random dimension, a simple updating of the number of components is obtained by a blocking argument, thus, easing challenges found in transdimensional moves via Metropolis-Hastings steps. Additionally, sampling occurs in the space of ordered partitions with blocks labeled in the least element order, which endows the sampler with good mixing properties. The performance of the proposed algorithm is evaluated in a simulation study. Supplementary materials for this article are available online.
2023
32
4
1416
1424
https://www.tandfonline.com/doi/full/10.1080/10618600.2023.2177298
Dirichlet process; Pitman-Yor process; Size-biased permutations; Species sampling models; Stick-breaking construction
Pierpaolo De Blasi; Maria F. Gil-Leyva
File in questo prodotto:
File Dimensione Formato  
GibbsOAS.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.37 MB
Formato Adobe PDF
1.37 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1945730
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact