The flux of gamma rays is measured with unprecedented accuracy by the Fermi Large Area Telescope from 100 MeV to almost 1 TeV. In the future, the Cherenkov Telescope Array will have the capability to measure photons up to 100 TeV. To accurately interpret this data, precise predictions of the production processes, specifically the cross section for the production of photons from the interaction of cosmic-ray protons and helium with atoms of the ISM, are necessary. In this study, we determine new analytical functions describing the Lorentz-invariant cross section for gamma-ray production in hadronic collisions. We utilize the limited total cross section data for pi 0 production channels and supplement this information by drawing on our previous analyses of charged pion production to infer missing details. In this context, we highlight the need for new data on pi 0 production. Our predictions include the cross sections for all production channels that contribute down to the 0.5% level of the final cross section, namely eta, K+, K-, K0S, and K0L mesons as well as ?, sigma, and Xi baryons. We determine the total differential cross section d sigma(p +p ->gamma+ X thorn /dE gamma from 10 MeV to 100 TeV with an uncertainty of 10% below 10 GeV of gamma-ray energies, increasing to 20% at the TeV energies. We provide numerical tables and a script for the community to access our energy -differential cross sections, which are provided for incident proton (nuclei) energies from 0.1 GeV to 107 GeV (GeV/n thorn .

New determination of the production cross section for $γ$ rays in the Galaxy

Luca Orusa
First
;
Mattia Di Mauro
;
Fiorenza Donato
;
Michael Korsmeier
2023-01-01

Abstract

The flux of gamma rays is measured with unprecedented accuracy by the Fermi Large Area Telescope from 100 MeV to almost 1 TeV. In the future, the Cherenkov Telescope Array will have the capability to measure photons up to 100 TeV. To accurately interpret this data, precise predictions of the production processes, specifically the cross section for the production of photons from the interaction of cosmic-ray protons and helium with atoms of the ISM, are necessary. In this study, we determine new analytical functions describing the Lorentz-invariant cross section for gamma-ray production in hadronic collisions. We utilize the limited total cross section data for pi 0 production channels and supplement this information by drawing on our previous analyses of charged pion production to infer missing details. In this context, we highlight the need for new data on pi 0 production. Our predictions include the cross sections for all production channels that contribute down to the 0.5% level of the final cross section, namely eta, K+, K-, K0S, and K0L mesons as well as ?, sigma, and Xi baryons. We determine the total differential cross section d sigma(p +p ->gamma+ X thorn /dE gamma from 10 MeV to 100 TeV with an uncertainty of 10% below 10 GeV of gamma-ray energies, increasing to 20% at the TeV energies. We provide numerical tables and a script for the community to access our energy -differential cross sections, which are provided for incident proton (nuclei) energies from 0.1 GeV to 107 GeV (GeV/n thorn .
2023
107
8
1
12
http://arxiv.org/abs/2302.01943v2
astro-ph.HE; astro-ph.HE; High Energy Physics - Phenomenology
Luca Orusa; Mattia Di Mauro; Fiorenza Donato; Michael Korsmeier
File in questo prodotto:
File Dimensione Formato  
2302.01943.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 1.61 MB
Formato Adobe PDF
1.61 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1946053
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact