In this study, a white light-activated bactericidal coating consisting of acrylic latex, zinc oxide nanoparticles (ZnO NPs) and crystal violet (CV) was produced through a two-step dipping process. CV molecules and ZnO NPs were incorporated into an acrylic latex coating deposited onto a glass substrate. After the incorporation, the colour of the coating surface changed to purple from colourless and XPS sputtering analysis showed the existence of ZnO NPs within the coating. In a bactericidal test, the CV dyed samples showed an intrinsic bactericidal activity (0.7-0.88 log reduction in viable bacteria number) against S. aureus whereas it was not observed on E. coli in the dark. Upon white light irradiation (light intensity: 512 lux), the bactericidal activity of the CV-dyed sample was significantly enhanced. Compared to the control, the CV-dyed samples showed 1.16-2.51 log reduction against both bacterial strains in white light. In terms of the testing against S. aureus in white light, Zn...
White light-activated bactericidal coating using acrylic latex, crystal violet, and zinc oxide nanoparticles
Salvadori, Enrico;
2024-01-01
Abstract
In this study, a white light-activated bactericidal coating consisting of acrylic latex, zinc oxide nanoparticles (ZnO NPs) and crystal violet (CV) was produced through a two-step dipping process. CV molecules and ZnO NPs were incorporated into an acrylic latex coating deposited onto a glass substrate. After the incorporation, the colour of the coating surface changed to purple from colourless and XPS sputtering analysis showed the existence of ZnO NPs within the coating. In a bactericidal test, the CV dyed samples showed an intrinsic bactericidal activity (0.7-0.88 log reduction in viable bacteria number) against S. aureus whereas it was not observed on E. coli in the dark. Upon white light irradiation (light intensity: 512 lux), the bactericidal activity of the CV-dyed sample was significantly enhanced. Compared to the control, the CV-dyed samples showed 1.16-2.51 log reduction against both bacterial strains in white light. In terms of the testing against S. aureus in white light, Zn...| File | Dimensione | Formato | |
|---|---|---|---|
|
D3MA00509G.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
1.26 MB
Formato
Adobe PDF
|
1.26 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



