Context. Extended and delayed emission around distant TeV sources induced by the effects of propagation of ? ray s through the intergalactic medium can be used for the measurement of the intergalactic magnetic field (IGMF). Aims. We search for delayed GeV emission from the hard-spectrum TeV ?-ray emitting blazar 1ES 0229+200, with the goal of detecting or constraining the IGMF-dependent secondary flux generated during the propagation of TeV ? rays through the intergalactic medium. Methods. We analysed the most recent MAGIC observations over a 5 year time span, and complemented them with historic data of the H.E.S.S. and VERITAS telescopes, along with a 12-year-long exposure of the Fermi/LAT telescope. We used them to trace source evolution in the GeV TeV band over a decade and a half. We used Monte Carlo simulations to predict the delayed secondary ?-ray flux, modulated by the source variability, as revealed by TeV-band observations. We then compared these predictions for various assumed IGMF strengths to all available measurements of the ?-ray flux evolution. Results. We find that the source flux in the energy range above 200 GeV experiences variations around its average on the 14-year time span of observations. No evidence for the flux variability is found in the 1100 GeV energy range accessible to Fermi/LAT. The non-detection of variability due to delayed emission from electromagnetic cascade developing in the intergalactic medium imposes a lower bound of B > 1.8 - 1017 G for the long-correlation-length IGMF and B > 1014 G for an IGMF of cosmological origin. Though weaker than the one previously derived from the analysis of Fermi/LAT data, this bound is more robust, being based on a conservative intrinsic source spectrum estimate and accounting for the details of source variability in the TeV energy band. We discuss implications of this bound for cosmological magnetic fields that might explain the baryon asymmetry of the Universe.

A lower bound on intergalactic magnetic fields from time variability of 1ES 0229+200 from MAGIC and Fermi /LAT observations

Depaoli D.;Vigorito C. F.;
2023-01-01

Abstract

Context. Extended and delayed emission around distant TeV sources induced by the effects of propagation of ? ray s through the intergalactic medium can be used for the measurement of the intergalactic magnetic field (IGMF). Aims. We search for delayed GeV emission from the hard-spectrum TeV ?-ray emitting blazar 1ES 0229+200, with the goal of detecting or constraining the IGMF-dependent secondary flux generated during the propagation of TeV ? rays through the intergalactic medium. Methods. We analysed the most recent MAGIC observations over a 5 year time span, and complemented them with historic data of the H.E.S.S. and VERITAS telescopes, along with a 12-year-long exposure of the Fermi/LAT telescope. We used them to trace source evolution in the GeV TeV band over a decade and a half. We used Monte Carlo simulations to predict the delayed secondary ?-ray flux, modulated by the source variability, as revealed by TeV-band observations. We then compared these predictions for various assumed IGMF strengths to all available measurements of the ?-ray flux evolution. Results. We find that the source flux in the energy range above 200 GeV experiences variations around its average on the 14-year time span of observations. No evidence for the flux variability is found in the 1100 GeV energy range accessible to Fermi/LAT. The non-detection of variability due to delayed emission from electromagnetic cascade developing in the intergalactic medium imposes a lower bound of B > 1.8 - 1017 G for the long-correlation-length IGMF and B > 1014 G for an IGMF of cosmological origin. Though weaker than the one previously derived from the analysis of Fermi/LAT data, this bound is more robust, being based on a conservative intrinsic source spectrum estimate and accounting for the details of source variability in the TeV energy band. We discuss implications of this bound for cosmological magnetic fields that might explain the baryon asymmetry of the Universe.
2023
670
1
10
https://arxiv.org/abs/2210.03321
Early Universe; Galaxies: active; Gamma rays: galaxies; Intergalactic medium
Acciari V.A.; Agudo I.; Aniello T.; Ansoldi S.; Antonelli L.A.; Arbet Engels A.; Artero M.; Asano K.; Baack D.; Babic A.; Baquero A.; Barres De Almeida U.; Barrio J.A.; Batkovic I.; Becerra Gonzalez J.; Bednarek W.; Bernardini E.; Bernardos M.; Berti A.; Besenrieder J.; Bhattacharyya W.; Bigongiari C.; Biland A.; Blanch O.; Bokenkamp H.; Bonnoli G.; Bosnjak Z.; Burelli I.; Busetto G.; Carosi R.; Ceribella G.; Cerruti M.; Chai Y.; Chilingarian A.; Cikota S.; Colombo E.; Contreras J.L.; Cortina J.; Covino S.; Damico G.; Delia V.; Da Vela P.; Dazzi F.; De Angelis A.; De Lotto B.; Del Popolo A.; Delfino M.; Delgado J.; Delgado Mendez C.; Depaoli D.; Di Pierro F.; Di Venere L.; Do Souto Espineira E.; Dominis Prester D.; Donini A.; Dorner D.; Doro M.; Elsaesser D.; Fallah Ramazani V.; Farina L.; Fattorini A.; Font L.; Fruck C.; Fukami S.; Fukazawa Y.; Garcia Lopez R.J.; Garczarczyk M.; Gasparyan S.; Gaug M.; Giglietto N.; Giordano F.; Gliwny P.; Godinovic N.; Green J.G.; Green D.; Hadasch D.; Hahn A.; Hassan T.; Heckmann L.; Herrera J.; Hrupec D.; Hutten M.; Inada T.; Iotov R.; Ishio K.; Iwamura Y.; Jimenez Martinez I.; Jormanainen J.; Jouvin L.; Kerszberg D.; Kobayashi Y.; Kubo H.; Kushida J.; Lamastra A.; Lelas D.; Leone F.; Lindfors E.; Linhoff L.; Liodakis I.; Lombardi S.; Longo F.; Lopez-Coto R.; Lopez-Moya M.; Lopez-Oramas A.; Loporchio S.; Lorini A.; MacHado De Oliveira Fraga B.; Maggio C.; Majumdar P.; Makariev M.; Mallamaci M.; Maneva G.; Manganaro M.; Mannheim K.; Mariotti M.; Martinez M.; Mas Aguilar A.; Mazin D.; Menchiari S.; Mender S.; Micanovic S.; Miceli D.; Miener T.; Miranda J.M.; Mirzoyan R.; Molina E.; Mondal H.A.; Moralejo A.; Morcuende D.; Moreno V.; Moretti E.; Nakamori T.; Nanci C.; Nava L.; Neustroev V.; Nievas Rosillo M.; Nigro C.; Nilsson K.; Nishijima K.; Noda K.; Nozaki S.; Ohtani Y.; Oka T.; Otero-Santos J.; Paiano S.; Palatiello M.; Paneque D.; Paoletti R.; Paredes J.M.; Pavletic L.; Penil P.; Persic M.; Pihet M.; Prada Moroni P.G.; Prandini E.; Priyadarshi C.; Puljak I.; Rhode W.; Ribo M.; Rico J.; Righi C.; Rugliancich A.; Sahakyan N.; Saito T.; Sakurai S.; Satalecka K.; Saturni F.G.; Schleicher B.; Schmidt K.; Schmuckermaier F.; Schubert J.L.; Schweizer T.; Sitarek J.; Snidaric I.; Sobczynska D.; Spolon A.; Stamerra A.; Striskovic J.; Strom D.; Strzys M.; Suda Y.; Suric T.; Takahashi M.; Takeishi R.; Tavecchio F.; Temnikov P.; Terzic T.; Teshima M.; Tosti L.; Truzzi S.; Tutone A.; Ubach S.; Van Scherpenberg J.; Vanzo G.; Vazquez Acosta M.; Ventura S.; Verguilov V.; Viale I.; Vigorito C.F.; Vitale V.; Vovk I.; Will M.; Wunderlich C.; Yamamoto T.; Zaric D.; Neronov A.; Semikoz D.; Korochkin A.
File in questo prodotto:
File Dimensione Formato  
2210.03321.pdf

Accesso aperto

Descrizione: ARXIV
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 359.98 kB
Formato Adobe PDF
359.98 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1946602
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 3
social impact