PurposeTo study neuroretinal alterations in patients affected by type 2 diabetes with no diabetic retinopathy (DR) or mild nonproliferative diabetic retinopathy (NPDR) and without any sign of diabetic macular edema.Patients and methodsIn total, 150 type 2 diabetic patients with no (131 eyes) or mild NPDR (19 eyes) and 50 healthy controls were enrolled in our study. All underwent a complete ophthalmologic examination, including Spectral-Domain optical coherence tomography (SD-OCT). Ganglion cell-inner plexiform layer (GC-IPL) and retinal nerve fiber layer (RNFL) thickness values were calculated after automated segmentation of SD-OCT scans.ResultsMean best-corrected visual acuity was 0.0±0.0 LogMAR in all the groups. Mean GC-IPL thickness was 80.6±8.1 μm in diabetic patients and 85.3±9.9 μm in healthy controls, respectively (P=0.001). Moreover, evaluating the two different diabetic groups, GC-IPL thickness was 80.7±8.1 μm and 79.7±8.8 μm in no-DR and mild-NPDR group (P=0.001 and P=0.022 compared with healthy controls, respectively). Average RNFL thickness was 86.1±10.1 μm in diabetes patients and 91.2±7.3 μm in controls, respectively (P=0.003). RNFL thickness was 86.4±10.2 μm in no-DR group and 84.1±9.4 μm in mild-NPDR group (P=0.007 and P=0.017 compared with healthy controls, respectively).ConclusionWe demonstrated a significantly reduced GC-IPL and RNFL thickness values in both no-DR and mild-NPDR groups compared with healthy controls. These data confirmed neuroretinal alterations are early in diabetes, preceding microvascular damages. © 2016 Macmillan Publishers Limited.

Neuroretinal alterations in the early stages of diabetic retinopathy in patients with type 2 diabetes mellitus

BORRELLI, ENRICO;
2016-01-01

Abstract

PurposeTo study neuroretinal alterations in patients affected by type 2 diabetes with no diabetic retinopathy (DR) or mild nonproliferative diabetic retinopathy (NPDR) and without any sign of diabetic macular edema.Patients and methodsIn total, 150 type 2 diabetic patients with no (131 eyes) or mild NPDR (19 eyes) and 50 healthy controls were enrolled in our study. All underwent a complete ophthalmologic examination, including Spectral-Domain optical coherence tomography (SD-OCT). Ganglion cell-inner plexiform layer (GC-IPL) and retinal nerve fiber layer (RNFL) thickness values were calculated after automated segmentation of SD-OCT scans.ResultsMean best-corrected visual acuity was 0.0±0.0 LogMAR in all the groups. Mean GC-IPL thickness was 80.6±8.1 μm in diabetic patients and 85.3±9.9 μm in healthy controls, respectively (P=0.001). Moreover, evaluating the two different diabetic groups, GC-IPL thickness was 80.7±8.1 μm and 79.7±8.8 μm in no-DR and mild-NPDR group (P=0.001 and P=0.022 compared with healthy controls, respectively). Average RNFL thickness was 86.1±10.1 μm in diabetes patients and 91.2±7.3 μm in controls, respectively (P=0.003). RNFL thickness was 86.4±10.2 μm in no-DR group and 84.1±9.4 μm in mild-NPDR group (P=0.007 and P=0.017 compared with healthy controls, respectively).ConclusionWe demonstrated a significantly reduced GC-IPL and RNFL thickness values in both no-DR and mild-NPDR groups compared with healthy controls. These data confirmed neuroretinal alterations are early in diabetes, preceding microvascular damages. © 2016 Macmillan Publishers Limited.
2016
EYE
30
5
673
679
http://www.nature.com/eye/index.html
Diabetic retinopathy; early neuroretinal alterations in diabetes
CARPINETO, Paolo; TOTO, LISA; ALOIA, RAFFAELLA; CICIARELLI, VINCENZO; BORRELLI, ENRICO; VITACOLONNA, Ester; DI NICOLA, MARTA; DI ANTONIO, LUCA; Mastro...espandi
File in questo prodotto:
File Dimensione Formato  
Neuroretinal alterations in the early stages of diabetic retinopathy in patients with type 2 diabetes mellitus.pdf

Accesso riservato

Dimensione 419.25 kB
Formato Adobe PDF
419.25 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1946871
Citazioni
  • ???jsp.display-item.citation.pmc??? 52
  • Scopus 112
  • ???jsp.display-item.citation.isi??? 98
social impact