Arbuscular mycorrhizal fungi (AMF) have accompanied the majority of land plants since their evolution in the Devonian period with a symbiotic alliance centered on nutrient exchanges. The exploration of AMF genomes is providing clues to explain major questions about their biology, evolution, and ecology. The dynamics of nuclei across the fungal life cycle, the abundance of transposable elements, and the epigenome landscape are emerging as sources of intraspecific variability, which can be especially important in organisms with no or rare sexual reproduction such as AMF. These features have been hypothesized to support AMF adaptability to a wide host range and to environmental changes. New insights on plant-fungus communication and on the iconic function of phosphate transport were also recently obtained that overall contribute to a better understanding of this ancient and fascinating symbiosis.
Lessons from arbuscular mycorrhizal fungal genomes
Luisa Lanfranco
;Paola Bonfante
2023-01-01
Abstract
Arbuscular mycorrhizal fungi (AMF) have accompanied the majority of land plants since their evolution in the Devonian period with a symbiotic alliance centered on nutrient exchanges. The exploration of AMF genomes is providing clues to explain major questions about their biology, evolution, and ecology. The dynamics of nuclei across the fungal life cycle, the abundance of transposable elements, and the epigenome landscape are emerging as sources of intraspecific variability, which can be especially important in organisms with no or rare sexual reproduction such as AMF. These features have been hypothesized to support AMF adaptability to a wide host range and to environmental changes. New insights on plant-fungus communication and on the iconic function of phosphate transport were also recently obtained that overall contribute to a better understanding of this ancient and fascinating symbiosis.File | Dimensione | Formato | |
---|---|---|---|
Lanfranco & Bonfante Curr Opin Microbiol 2023.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
3.36 MB
Formato
Adobe PDF
|
3.36 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.