Wireless sensor networks (WSNs) can be reliable tools in agricultural management. In this work, a low cost, low power consumption, and simple wireless sensing system dedicated for agricultural environments is presented. The system is applicable to small to medium sized fields, located anywhere with cellular network coverage, even in isolated rural areas. The novelty of the developed system lies in the fact that it uses a dummy device as Coordinator which through simple but advanced programming can receive, process, and send data packets from all End-nodes to the cloud via a 4G cellular network. Furthermore, it is energy independent, using solar energy harvesting panels, making it feasible to operate in remote, isolated fields. A star topology was followed for the sake of simplification, low energy demands and increased network reliability. The developed system was tested and evaluated in laboratory and real field environment with satisfactory operation in terms of independence, and operational reliability concerning packet losses, communication range (>250 m covering fields up to 36 ha), energy autonomy, and uninterrupted operation. The network can support up to seven nodes in a 30 min data acquisition cycle. These results confirmed the potential of this system to serve as a viable option for monitoring environmental, soil, and crop parameters.

Low-cost wireless sensing system for precision agriculture applications in orchards

Berruto, Remigio;Bochtis, Dionysis
2021-01-01

Abstract

Wireless sensor networks (WSNs) can be reliable tools in agricultural management. In this work, a low cost, low power consumption, and simple wireless sensing system dedicated for agricultural environments is presented. The system is applicable to small to medium sized fields, located anywhere with cellular network coverage, even in isolated rural areas. The novelty of the developed system lies in the fact that it uses a dummy device as Coordinator which through simple but advanced programming can receive, process, and send data packets from all End-nodes to the cloud via a 4G cellular network. Furthermore, it is energy independent, using solar energy harvesting panels, making it feasible to operate in remote, isolated fields. A star topology was followed for the sake of simplification, low energy demands and increased network reliability. The developed system was tested and evaluated in laboratory and real field environment with satisfactory operation in terms of independence, and operational reliability concerning packet losses, communication range (>250 m covering fields up to 36 ha), energy autonomy, and uninterrupted operation. The network can support up to seven nodes in a 30 min data acquisition cycle. These results confirmed the potential of this system to serve as a viable option for monitoring environmental, soil, and crop parameters.
2021
11
5858
1
13
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85113561093&doi=10.3390/app11135858&partnerID=40&md5=1dc54b9b899517ccf0f9babf78f263b4
Tagarakis, Aristotelis C.;Kateris, Dimitrios; Berruto, Remigio; Bochtis, Dionysis
File in questo prodotto:
File Dimensione Formato  
applsci-11-05858 (1).pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 3.43 MB
Formato Adobe PDF
3.43 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1949424
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 10
social impact