In this contribution, we tried to shed light on the molecular structure of octyl methoxycinnamate (octinoxate, OMC) adsorbed in NaX zeolite, which represents a promising hybrid UV filter system. The combination of infrared spectroscopy and density functional theory modeling was crucial to identify all the complex host-guest interactions and to unveil that, although slightly thermodynamically unfavored, OMC is dominantly present in the trans-form inside the NaX framework. We also showed that the interaction between the zeolite Na cations and the OMC molecule is the key feature that determines the stability and efficacy of these hybrid UV filters. These findings confirm that cationic zeolites are promising materials for the encapsulation of UV filters to decrease their negative impact on the environment and their photochemical instability.

Unraveling the Molecular Structure of Zeolite-Octyl Methoxycinnamate Hybrid UV Filters: A Combined Spectroscopic and Computational Approach

Mino, L
Last
2023-01-01

Abstract

In this contribution, we tried to shed light on the molecular structure of octyl methoxycinnamate (octinoxate, OMC) adsorbed in NaX zeolite, which represents a promising hybrid UV filter system. The combination of infrared spectroscopy and density functional theory modeling was crucial to identify all the complex host-guest interactions and to unveil that, although slightly thermodynamically unfavored, OMC is dominantly present in the trans-form inside the NaX framework. We also showed that the interaction between the zeolite Na cations and the OMC molecule is the key feature that determines the stability and efficacy of these hybrid UV filters. These findings confirm that cationic zeolites are promising materials for the encapsulation of UV filters to decrease their negative impact on the environment and their photochemical instability.
2023
127
50
24242
24252
Fischer, M; Fantini, R; Arletti, R; Brauer, J; Mino, L
File in questo prodotto:
File Dimensione Formato  
Unraveling the Molecular Structure of Zeolite–Octyl Methoxycinnamate Hybrid UV Filters-A Combined Spectroscopic and Computational Approach.pdf

Accesso aperto

Descrizione: PDF editoriale Open Access
Tipo di file: PDF EDITORIALE
Dimensione 3.64 MB
Formato Adobe PDF
3.64 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1951016
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact