This work reports the first example of combined sequential extraction by pulsed electric fields (PEF) (3 kV/cm, 100 kJ/kg, 2 Hz, 100 ms) and supercritical (SC) fluid extraction (SFE) (15 MPa, 25 mL/min, 50 degrees C, 60 min) with CO2 (SC-CO2) for the valorisation of almond hull (AH) biomass. PEF+SFE boosted the efficiency of the protocol up to 77% for total antioxidant capacity and 20% in terms of polyphenols recovery compared to the traditional soaking. Triple-TOF-LC-MS-MS analysis provided the phenolic profiles for the PEF and SCCO2 extracts, observing significant differences in the polyphenol profile according to the technology applied. Additionally, NMR analysis detected the presence of the carbohydrate soluble (mainly glucose, fructose and sucrose) and lipidic fractions, both selectively extracted by PEF or SC-CO2, respectively. Finally, the post-extraction residual solid biomass was characterized by several techniques such as TGA, FT-IR and SEM. For the latter, the formation of surface pores after PEF and a high fibre compaction after SFE was observed. On the other hand, DTG curves allowed to firmly propose concurrent valorisation routes for this solid, in agreement with a zero-waste approach. (c) 2023 The Author(s). Published by Elsevier Ltd on behalf of Institution of Chemical Engineers. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Sequential extraction of almond hull biomass with pulsed electric fields (PEF) and supercritical CO2 for the recovery of lipids, carbohydrates and antioxidants

Cravotto, G;
2023-01-01

Abstract

This work reports the first example of combined sequential extraction by pulsed electric fields (PEF) (3 kV/cm, 100 kJ/kg, 2 Hz, 100 ms) and supercritical (SC) fluid extraction (SFE) (15 MPa, 25 mL/min, 50 degrees C, 60 min) with CO2 (SC-CO2) for the valorisation of almond hull (AH) biomass. PEF+SFE boosted the efficiency of the protocol up to 77% for total antioxidant capacity and 20% in terms of polyphenols recovery compared to the traditional soaking. Triple-TOF-LC-MS-MS analysis provided the phenolic profiles for the PEF and SCCO2 extracts, observing significant differences in the polyphenol profile according to the technology applied. Additionally, NMR analysis detected the presence of the carbohydrate soluble (mainly glucose, fructose and sucrose) and lipidic fractions, both selectively extracted by PEF or SC-CO2, respectively. Finally, the post-extraction residual solid biomass was characterized by several techniques such as TGA, FT-IR and SEM. For the latter, the formation of surface pores after PEF and a high fibre compaction after SFE was observed. On the other hand, DTG curves allowed to firmly propose concurrent valorisation routes for this solid, in agreement with a zero-waste approach. (c) 2023 The Author(s). Published by Elsevier Ltd on behalf of Institution of Chemical Engineers. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
2023
139
216
226
https://www.sciencedirect.com/science/article/pii/S0960308523000445
Waste valorisation; Sequential extraction process; Chemical composition; Bioactive compounds; Innovative extraction technologies
Salgado-Ramos, M; Martí-Quijal, FJ; Huertas-Alonso, AJ; Sánchez-Verdú, MP; Cravotto, G; Moreno, A; Barba, FJ
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0960308523000445-main.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 2.24 MB
Formato Adobe PDF
2.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1951096
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact