To mitigate climate change, reducing greenhouse gas emissions can be achieved by decreasing the use of fossil fuels and increasing that of alternative sources, such as energy crops. However, one of the most important problems in the use of biomass as a fuel is that of changing soil use and consumption, leading to competition with food crops. We addressed the topic by evaluating the possibility to exploit contaminated areas for energy crops cultivation. Indeed, soil contamination makes land inappropriate for cultivation, with damaging consequences for ecosystems, as well as posing serious health hazards to living beings. Specifically, this work aimed to evaluate the ability of hemp (Cannabis sativa L.) plants to grow on a copper (Cu)-contaminated medium. In addition, the effectiveness of an environment-friendly treatment with sulfate in improving plant ability to cope with Cu-induced oxidative stress was also explored. Results showed that plants were able to grow at high Cu concentrations. Therefore, hemp could represent an interesting energy crop in Cu-contaminated soils. Although the response of Cu-treated plants was evidenced by the increase in thiol content, following modulation of sulfur metabolism, it remains to be clarified whether the use of exogenous sulfate could be an agronomic practice to improve crop performance under these edaphic conditions.

Potential Use of Copper-Contaminated Soils for Hemp (Cannabis sativa L.) Cultivation

Silvia Celletti
;
2021-01-01

Abstract

To mitigate climate change, reducing greenhouse gas emissions can be achieved by decreasing the use of fossil fuels and increasing that of alternative sources, such as energy crops. However, one of the most important problems in the use of biomass as a fuel is that of changing soil use and consumption, leading to competition with food crops. We addressed the topic by evaluating the possibility to exploit contaminated areas for energy crops cultivation. Indeed, soil contamination makes land inappropriate for cultivation, with damaging consequences for ecosystems, as well as posing serious health hazards to living beings. Specifically, this work aimed to evaluate the ability of hemp (Cannabis sativa L.) plants to grow on a copper (Cu)-contaminated medium. In addition, the effectiveness of an environment-friendly treatment with sulfate in improving plant ability to cope with Cu-induced oxidative stress was also explored. Results showed that plants were able to grow at high Cu concentrations. Therefore, hemp could represent an interesting energy crop in Cu-contaminated soils. Although the response of Cu-treated plants was evidenced by the increase in thiol content, following modulation of sulfur metabolism, it remains to be clarified whether the use of exogenous sulfate could be an agronomic practice to improve crop performance under these edaphic conditions.
2021
8
11
1
14
https://www.mdpi.com/2076-3298/8/11/111
biofuel; Cannabis sativa L; climate change; copper; sulfur; sustainability
Giulia Quagliata; Silvia Celletti; Eleonora Coppa; Tanja Mimmo; Stefano Cesco; Stefania Astolfi
File in questo prodotto:
File Dimensione Formato  
Quagliata et al. 2021_Environments.pdf

Accesso aperto

Dimensione 2.11 MB
Formato Adobe PDF
2.11 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1951914
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact