Polyvinyl butyral (PVB) is widely used as an interlayer material in laminated glass applications, mainly in the automotive industry, but also for construction and photovoltaic applications. Post-consumed laminated glass is a waste that is mainly landfilled; nevertheless, it can be revalorized upon efficient separation and removal of adhered glass. PVB interlayers in laminated glass are always plasticized with a significant fraction in the 20–40% w/w range of plasticizer, and they are protected from the environment by two sheets of glass. In this work, the aim is to develop a thorough characterization strategy for PVB films. Neat reference PVB grades intended for interlayer use are compared with properly processed (delaminated) post-consumed PVB grades from the automotive and construction sectors. Methods are developed to open opportunities for recycling and reuse of the latter. The plasticizer content and chemical nature are determined by applying well-known analytical techniques, namely, FT-IR, TGA, NMR. The issue of potential aging during the life cycle of the original laminated material is also addressed through NMR. Based on the findings, a sensor capable of directly sorting PVB post-consumer materials will be developed and calibrated at a later stage.

An integrated characterization strategy on board for recycling of poly(vinyl butyral) (PVB) from laminated glass wastes

Simone Bordignon;Michele R. Chierotti;Stefano Nejrotti;Matteo Bonomo;Claudia Barolo;Alessandro Piovano;
2024-01-01

Abstract

Polyvinyl butyral (PVB) is widely used as an interlayer material in laminated glass applications, mainly in the automotive industry, but also for construction and photovoltaic applications. Post-consumed laminated glass is a waste that is mainly landfilled; nevertheless, it can be revalorized upon efficient separation and removal of adhered glass. PVB interlayers in laminated glass are always plasticized with a significant fraction in the 20–40% w/w range of plasticizer, and they are protected from the environment by two sheets of glass. In this work, the aim is to develop a thorough characterization strategy for PVB films. Neat reference PVB grades intended for interlayer use are compared with properly processed (delaminated) post-consumed PVB grades from the automotive and construction sectors. Methods are developed to open opportunities for recycling and reuse of the latter. The plasticizer content and chemical nature are determined by applying well-known analytical techniques, namely, FT-IR, TGA, NMR. The issue of potential aging during the life cycle of the original laminated material is also addressed through NMR. Based on the findings, a sensor capable of directly sorting PVB post-consumer materials will be developed and calibrated at a later stage.
2024
16
10
1
21
https://www.mdpi.com/2073-4360/16/1/10
Vasilis Nikitakos; Athanasios D. Porfyris; Konstantinos Beltsios; Constantine Papaspyrides; Simone Bordignon; Michele R. Chierotti; Stefano Nejrotti; Matteo Bonomo; Claudia Barolo; Alessandro Piovano; Rudolf Pfaendner; Beatriz Yecora; Angelica Perez
File in questo prodotto:
File Dimensione Formato  
polymers-16-00010.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 9.04 MB
Formato Adobe PDF
9.04 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1952435
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact