: The epigenome coordinates spatial-temporal specific gene expression during development and in adulthood, for the maintenance of homeostasis and upon tissue repair. The upheaval of the epigenetic landscape is a key event in the onset of many pathologies including tumours, where epigenetic changes cooperate with genetic aberrations to establish the neoplastic phenotype and to drive cell plasticity during its evolution. DNA methylation, histone modifiers and readers or other chromatin components are indeed often altered in cancers, such as carcinomas that develop in epithelia. Lining the surfaces and the cavities of our body and acting as a barrier from the environment, epithelia are frequently subjected to acute or chronic tissue damages, such as mechanical injuries or inflammatory episodes. These events can activate plasticity mechanisms, with a deep impact on cells' epigenome. Despite being very effective, tissue repair mechanisms are closely associated with tumour onset. Here we review the similarities between tissue repair and carcinogenesis, with a special focus on the epigenetic mechanisms activated by cells during repair and opted by carcinoma cells in multiple epithelia. Moreover, we discuss the recent findings on inflammatory and wound memory in epithelia and describe the epigenetic modifications that characterise them. Finally, as wound memory in epithelial cells promotes carcinogenesis, we highlight how it represents an early step for the establishment of field cancerization.
Bridging tissue repair and epithelial carcinogenesis: epigenetic memory and field cancerization
Levra Levron, ChiaraCo-first
;Elettrico, LucaCo-first
;Duval, Carlotta;Piacenti, Gabriele;Proserpio, Valentina;Donati, Giacomo
Last
2024-01-01
Abstract
: The epigenome coordinates spatial-temporal specific gene expression during development and in adulthood, for the maintenance of homeostasis and upon tissue repair. The upheaval of the epigenetic landscape is a key event in the onset of many pathologies including tumours, where epigenetic changes cooperate with genetic aberrations to establish the neoplastic phenotype and to drive cell plasticity during its evolution. DNA methylation, histone modifiers and readers or other chromatin components are indeed often altered in cancers, such as carcinomas that develop in epithelia. Lining the surfaces and the cavities of our body and acting as a barrier from the environment, epithelia are frequently subjected to acute or chronic tissue damages, such as mechanical injuries or inflammatory episodes. These events can activate plasticity mechanisms, with a deep impact on cells' epigenome. Despite being very effective, tissue repair mechanisms are closely associated with tumour onset. Here we review the similarities between tissue repair and carcinogenesis, with a special focus on the epigenetic mechanisms activated by cells during repair and opted by carcinoma cells in multiple epithelia. Moreover, we discuss the recent findings on inflammatory and wound memory in epithelia and describe the epigenetic modifications that characterise them. Finally, as wound memory in epithelial cells promotes carcinogenesis, we highlight how it represents an early step for the establishment of field cancerization.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.