The generation of 3D networks of primary neurons is a big challenge in neuroscience. Here, a novel method is presented for a 3D neuronal culture on superhydrophobic (SH) substrates. How nano-patterned SH devices stimulate neurons to build 3D networks is investigated. Scanning electron microscopy and confocal imaging show that soon after plating neurites adhere to the nanopatterned pillar sidewalls and they are subsequently pulled between pillars in a suspended position. These neurons display an enhanced survival rate compared to standard cultures and develop mature networks with physiological excitability. These findings underline the importance of using nanostructured SH surfaces for directing 3D neuronal growth, as well as for the design of biomaterials for neuronal regeneration. A novel method for culturing primary mouse hippocampal neurons and neuron-astrocyte co-cultures using superhydrophobic substrates with characteristic lengths falling into the microscale range and surface patterning in the nano-range is developed. This new culture method fosters neuronal growth and differentiation in an open scaffold, by reducing the interactions with the substrate and maximizing the physiological processes of cell-cell adhesion and synapse formation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Nanostructured superhydrophobic substrates trigger the development of 3D neuronal networks

Limongi T.
Co-first
;
Benfenati F.;
2013-01-01

Abstract

The generation of 3D networks of primary neurons is a big challenge in neuroscience. Here, a novel method is presented for a 3D neuronal culture on superhydrophobic (SH) substrates. How nano-patterned SH devices stimulate neurons to build 3D networks is investigated. Scanning electron microscopy and confocal imaging show that soon after plating neurites adhere to the nanopatterned pillar sidewalls and they are subsequently pulled between pillars in a suspended position. These neurons display an enhanced survival rate compared to standard cultures and develop mature networks with physiological excitability. These findings underline the importance of using nanostructured SH surfaces for directing 3D neuronal growth, as well as for the design of biomaterials for neuronal regeneration. A novel method for culturing primary mouse hippocampal neurons and neuron-astrocyte co-cultures using superhydrophobic substrates with characteristic lengths falling into the microscale range and surface patterning in the nano-range is developed. This new culture method fosters neuronal growth and differentiation in an open scaffold, by reducing the interactions with the substrate and maximizing the physiological processes of cell-cell adhesion and synapse formation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2013
9
3
402
412
3D cell cultures; microfabrication; nanostructures; primary neurons; tissue engineering
Limongi T.; Cesca F.; Gentile F.; Marotta R.; Ruffilli R.; Barberis A.; Dal Maschio M.; Petrini E.M.; Santoriello S.; Benfenati F.; Di Fabrizio E....espandi
File in questo prodotto:
File Dimensione Formato  
Small - 2012 - Limongi - Nanostructured Superhydrophobic Substrates Trigger the Development of 3D Neuronal Networks.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 1.83 MB
Formato Adobe PDF
1.83 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1955517
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 85
  • ???jsp.display-item.citation.isi??? ND
social impact