In the present paper, a Nystrom-type method for second kind Volterra integral equations is introduced and studied. The method makes use of generalized Bernstein polynomials, defined for continuous functions and based on equally spaced points. Stability and convergence are studied in the space of continuous functions. Numerical tests illustrate the performance of the proposed approach.

On the numerical solution of Volterra integral equations on equispaced nodes

Mezzanotte D.;Occorsio D.
2023-01-01

Abstract

In the present paper, a Nystrom-type method for second kind Volterra integral equations is introduced and studied. The method makes use of generalized Bernstein polynomials, defined for continuous functions and based on equally spaced points. Stability and convergence are studied in the space of continuous functions. Numerical tests illustrate the performance of the proposed approach.
2023
59
9
23
Volterra integral equations; Nyström method; generalized Bernstein polynomials
Fermo L.; Mezzanotte D.; Occorsio D.
File in questo prodotto:
File Dimensione Formato  
etna_FerMezzOcc_pp9-23.pdf

Accesso riservato

Descrizione: Article
Tipo di file: PDF EDITORIALE
Dimensione 306.09 kB
Formato Adobe PDF
306.09 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1962960
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact