In the present research, we report on an innovative and quick procedure for the synthesis of metal oxides: a sol-gel procedure which is followed by two steps that are assisted by microwaves (MW) heating. First, MW heating promotes gel drying and successively permits the calcination of the xerogel in a few minutes, using a susceptor that rapidly reaches high temperatures. The procedure was employed for the synthesis of zirconium dioxide (ZrO2), and MW-assisted calcination enables the collection of tetragonal ZrO2, as confirmed by different experimental techniques (PXRD, HR-TEM and Raman spectroscopy). Using this MW-assisted sol-gel procedure, a promoted sulphated zirconia (SZ) has been obtained. Both the nature and strength of SZ surface acidity have been investigated with FTIR spectroscopy using CO and 2,6-dimethylpyridine (2,6-DMP) as probe molecules. The obtained materials were tested as catalysts in acid hydrolysis of glucose to give 5-(hydroxymethyl)furfural (5-HMF). One of the obtained catalysts exhibited a better selectivity towards 5-HMF with respect to SZ material prepared by a classical precipitation route, suggesting that this procedure could be employed to obtain a well-known catalyst with a less energy-consuming procedure. Catalytic results also suggest that good selectivity to 5-HMF can be achieved in aqueous media in the presence of weak Lewis and Bronsted sites.

Innovative Synthetic Approaches for Sulphate-Promoted Catalysts for Biomass Valorisation

Giordana, Alessia
First
;
Signoretto, Michela;Operti, Lorenza;Cerrato, Giuseppina
2023-01-01

Abstract

In the present research, we report on an innovative and quick procedure for the synthesis of metal oxides: a sol-gel procedure which is followed by two steps that are assisted by microwaves (MW) heating. First, MW heating promotes gel drying and successively permits the calcination of the xerogel in a few minutes, using a susceptor that rapidly reaches high temperatures. The procedure was employed for the synthesis of zirconium dioxide (ZrO2), and MW-assisted calcination enables the collection of tetragonal ZrO2, as confirmed by different experimental techniques (PXRD, HR-TEM and Raman spectroscopy). Using this MW-assisted sol-gel procedure, a promoted sulphated zirconia (SZ) has been obtained. Both the nature and strength of SZ surface acidity have been investigated with FTIR spectroscopy using CO and 2,6-dimethylpyridine (2,6-DMP) as probe molecules. The obtained materials were tested as catalysts in acid hydrolysis of glucose to give 5-(hydroxymethyl)furfural (5-HMF). One of the obtained catalysts exhibited a better selectivity towards 5-HMF with respect to SZ material prepared by a classical precipitation route, suggesting that this procedure could be employed to obtain a well-known catalyst with a less energy-consuming procedure. Catalytic results also suggest that good selectivity to 5-HMF can be achieved in aqueous media in the presence of weak Lewis and Bronsted sites.
2023
13
7
1094
1094
HMF; solid acid catalyst; biomass valorization; Lewis; Bronsted acidity; sulphated zirconia; MW synthesis; IR spectroscopy
Giordana, Alessia; Pizzolitto, Cristina; Ghedini, Elena; Signoretto, Michela; Operti, Lorenza; Cerrato, Giuseppina
File in questo prodotto:
File Dimensione Formato  
SZ_Giordana.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 3.97 MB
Formato Adobe PDF
3.97 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1963112
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact