Reactive species refers to a group of chemicals, mainly reactive oxygen species (ROS) and reactive nitrogen species (RNS), that are naturally formed by cells as a byproduct of cell metabolism and regulated by various internal and external factors. Due to their highly chemical reactivity, ROS play a crucial role in physiological and pathological processes which is why studies on ROS regulation for disease treatment show attracted increasing interest. Notably, ROS are now studied as a powerful therapeutic weapon in ROS-regulating therapies such as ROS-based cytotoxic therapies mediated by ROS-increasing agents for cancer treatment. Thanks to the significant progress in nanotechnology, innovative nanoplatforms with ROS-regulating activities have been developed to look for effective ROS-related nanomedicines. In this review, studies on ROS-based cytotoxic therapies against cancer as photodynamic therapy (PDT), sonodynamic therapy (SDT), radiation therapy (RT) and chemodynamic therapy (CDT) are discussed, with a focus on the stimuli-responsive ROS-generating nanoplatforms developed for breaking the current therapeutic limits of ROS-based cytotoxic therapies. Finally, we suppose that our review on this developing field will be valuable for promoting the progress of ROS-based cytotoxic therapies not only in basic research but overall, in translational research and clinical application.
ROS-generating nanoplatforms as selective and tunable therapeutic weapons against cancer
Foglietta F.First
;Serpe L.
;Canaparo R.Last
2023-01-01
Abstract
Reactive species refers to a group of chemicals, mainly reactive oxygen species (ROS) and reactive nitrogen species (RNS), that are naturally formed by cells as a byproduct of cell metabolism and regulated by various internal and external factors. Due to their highly chemical reactivity, ROS play a crucial role in physiological and pathological processes which is why studies on ROS regulation for disease treatment show attracted increasing interest. Notably, ROS are now studied as a powerful therapeutic weapon in ROS-regulating therapies such as ROS-based cytotoxic therapies mediated by ROS-increasing agents for cancer treatment. Thanks to the significant progress in nanotechnology, innovative nanoplatforms with ROS-regulating activities have been developed to look for effective ROS-related nanomedicines. In this review, studies on ROS-based cytotoxic therapies against cancer as photodynamic therapy (PDT), sonodynamic therapy (SDT), radiation therapy (RT) and chemodynamic therapy (CDT) are discussed, with a focus on the stimuli-responsive ROS-generating nanoplatforms developed for breaking the current therapeutic limits of ROS-based cytotoxic therapies. Finally, we suppose that our review on this developing field will be valuable for promoting the progress of ROS-based cytotoxic therapies not only in basic research but overall, in translational research and clinical application.File | Dimensione | Formato | |
---|---|---|---|
2023 DN.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
2.24 MB
Formato
Adobe PDF
|
2.24 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.