To conduct policy efficiently, central banks must use available data to infer, or learn, the relevant structural relationships in the economy. However, because a central bank's policy affects economic outcomes, the chosen policy may help or hinder its efforts to learn. This paper examines whether real-time learning allows a central bank to learn the economy's underlying structure and studies the impact that learning has on the performance of optimal policies under a variety of learning environments. Our main results are as follows. First, when monetary policy is formulated as an optimal discretionary targeting rule, we find that the rational expectations equilibrium and the optimal policy are real-time learnable. This result is robust to a range of assumptions concerning private-sector learning behavior. Second, when policy is set with discretion, learning can lead to outcomes that are better than if the model parameters are known. Finally, if the private sector is learning, then unannounced changes to the policy regime, particularly changes to the inflation target, can raise policy loss considerably. (C) 2007 Elsevier B.V. All rights reserved.

Learning and optimal monetary policy

Ravenna, Federico
2008-01-01

Abstract

To conduct policy efficiently, central banks must use available data to infer, or learn, the relevant structural relationships in the economy. However, because a central bank's policy affects economic outcomes, the chosen policy may help or hinder its efforts to learn. This paper examines whether real-time learning allows a central bank to learn the economy's underlying structure and studies the impact that learning has on the performance of optimal policies under a variety of learning environments. Our main results are as follows. First, when monetary policy is formulated as an optimal discretionary targeting rule, we find that the rational expectations equilibrium and the optimal policy are real-time learnable. This result is robust to a range of assumptions concerning private-sector learning behavior. Second, when policy is set with discretion, learning can lead to outcomes that are better than if the model parameters are known. Finally, if the private sector is learning, then unannounced changes to the policy regime, particularly changes to the inflation target, can raise policy loss considerably. (C) 2007 Elsevier B.V. All rights reserved.
2008
32
6
1964
1994
learning; optimal policy; transparency
Dennis, Richard; Ravenna, Federico
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1963993
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact