Acute myeloid leukemia (AML) is a complex hematologic malignancy with high morbidity and mortality. Nucleophosmin 1 (NPM1) mutations occur in approximately 30% of AML cases, and NPM1-mutated AML is classified as a distinct entity. NPM1-mutated AML patients without additional genetic abnormalities have a favorable prognosis. Despite this, 30–50% of them experience relapse. This study aimed to investigate the potential of total RNAseq in improving the characterization of NPM1-mutated AML patients. We explored genetic variations independently of myeloid stratification, revealing a complex molecular scenario. We showed that total RNAseq enables the uncovering of different genetic alterations and clonal subtypes, allowing for a comprehensive evaluation of the real expression of exome transcripts in leukemic clones and the identification of aberrant fusion transcripts. This characterization may enhance understanding and guide improved treatment strategies for NPM1mut AML patients, contributing to better outcomes. Our findings underscore the complexity of NPM1-mutated AML, supporting the incorporation of advanced technologies for precise risk stratification and personalized therapeutic strategies. The study provides a foundation for future investigations into the clinical implications of identified genetic variations and highlights the importance of evolving diagnostic approaches in leukemia management.

Comprehensive Molecular Profiling of NPM1-Mutated Acute Myeloid Leukemia Using RNAseq Approach

Ymera Pignochino;Aurora Schiavon;Enrico Berrino;Giorgia Giordano;Federico Itri;Daniela Cilloni;Marco Lo Iacono
2024-01-01

Abstract

Acute myeloid leukemia (AML) is a complex hematologic malignancy with high morbidity and mortality. Nucleophosmin 1 (NPM1) mutations occur in approximately 30% of AML cases, and NPM1-mutated AML is classified as a distinct entity. NPM1-mutated AML patients without additional genetic abnormalities have a favorable prognosis. Despite this, 30–50% of them experience relapse. This study aimed to investigate the potential of total RNAseq in improving the characterization of NPM1-mutated AML patients. We explored genetic variations independently of myeloid stratification, revealing a complex molecular scenario. We showed that total RNAseq enables the uncovering of different genetic alterations and clonal subtypes, allowing for a comprehensive evaluation of the real expression of exome transcripts in leukemic clones and the identification of aberrant fusion transcripts. This characterization may enhance understanding and guide improved treatment strategies for NPM1mut AML patients, contributing to better outcomes. Our findings underscore the complexity of NPM1-mutated AML, supporting the incorporation of advanced technologies for precise risk stratification and personalized therapeutic strategies. The study provides a foundation for future investigations into the clinical implications of identified genetic variations and highlights the importance of evolving diagnostic approaches in leukemia management.
2024
3631
3631
https://www.mdpi.com/1422-0067/25/7/3631
Jessica Petiti, Ymera Pignochino, Aurora Schiavon, Emilia Giugliano, Enrico Berrino, Giorgia Giordano, Federico Itri, Matteo Dragani, Daniela Cilloni, Marco Lo Iacono
File in questo prodotto:
File Dimensione Formato  
ijms-25-03631.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 626.7 kB
Formato Adobe PDF
626.7 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1964611
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact