Most human activities require collaborations within and across formal or informal teams. Our understanding of how the collaborative efforts spent by teams relate to their performance is still a matter of debate. Teamwork results in a highly interconnected ecosystem of potentially overlapping components where tasks are performed in interaction with team members and across other teams. To tackle this problem, we propose a graph neural network model to predict a team’s performance while identifying the drivers determining such outcome. In particular, the model is based on three architectural channels: topological, centrality, and contextual, which capture different factors potentially shaping teams’ success. We endow the model with two attention mechanisms to boost model performance and allow interpretability. A first mechanism allows pinpointing key members inside the team. A second mechanism allows us to quantify the contributions of the three driver effects in determining the outcome performance. We test model performance on various domains, outperforming most classical and neural baselines. Moreover, we include synthetic datasets designed to validate how the model disentangles the intended properties on which our model vastly outperforms baselines.

Modeling teams performance using deep representational learning on graphs

Carli, Francesco;Foini, Pietro;Gozzi, Nicolò;Perra, Nicola;Schifanella, Rossano
2024-01-01

Abstract

Most human activities require collaborations within and across formal or informal teams. Our understanding of how the collaborative efforts spent by teams relate to their performance is still a matter of debate. Teamwork results in a highly interconnected ecosystem of potentially overlapping components where tasks are performed in interaction with team members and across other teams. To tackle this problem, we propose a graph neural network model to predict a team’s performance while identifying the drivers determining such outcome. In particular, the model is based on three architectural channels: topological, centrality, and contextual, which capture different factors potentially shaping teams’ success. We endow the model with two attention mechanisms to boost model performance and allow interpretability. A first mechanism allows pinpointing key members inside the team. A second mechanism allows us to quantify the contributions of the three driver effects in determining the outcome performance. We test model performance on various domains, outperforming most classical and neural baselines. Moreover, we include synthetic datasets designed to validate how the model disentangles the intended properties on which our model vastly outperforms baselines.
2024
13
1
1
20
https://epjdatascience.springeropen.com/articles/10.1140/epjds/s13688-023-00442-1
Team performance; Graph neural networks; Graph representation learning; Sub-graph classification
Carli, Francesco; Foini, Pietro; Gozzi, Nicolò; Perra, Nicola; Schifanella, Rossano
File in questo prodotto:
File Dimensione Formato  
s13688-023-00442-1.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 5.4 MB
Formato Adobe PDF
5.4 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1965351
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact