This study adds insight regarding the occurrence and spread of SARS-CoV-2 Variants of Concern (VOCs) and Var-iants of Interest (VOIs) in Italy in October and November 2022, by testing urban wastewater collected through-out the country. A total of 332 wastewater samples were collected from 20 Italian Regions/Autonomous Provinces (APs) within the framework of national SARS-CoV-2 environmental surveillance. Of these, 164 were collected in the first week of October and 168 in the first week of November. A similar to 1600 bp fragment of the spike protein was sequenced by Sanger (for individual samples) and long-read nanopore sequencing (for pooled Region/AP samples).In October, mutations characteristic of Omicron BA.4/BA.5 were detected in the vast majority (91 %) of the samples amplified by Sanger sequencing. A fraction of these sequences (9 %) also displayed the R346T mutation. Despite the low prevalence documented in clinical cases at the time of sampling, amino acid substitutions characteristic of sublineages BQ.1 or BQ.1.1 were detected in 5 % of sequenced samples from four Regions/APs. A significantly higher variability of sequences and variants was documented in November 2022, when the rate of se-quences harbouring mutations of lineages BQ.1 and BQ1.1 increased to 43 %, and the number of Regions/APs positive for the new Omicron subvariant more than tripled (n = 13) compared to October. Moreover, an increase in the number of sequences with the mutation package BA.4/BA.5 + R346T (18 %), as well as the detection of variants never observed before in wastewater in Italy, such as BA.2.75 and XBB.1 (the latter in a Region where no clinical cases asso-ciated with this variant had ever been documented) was recorded.The results suggest that, as predicted by the ECDC, BQ.1/BQ.1.1 is rapidly becoming dominant in late 2022. Environ-mental surveillance proves to be a powerful tool for tracking the spread of SARS-CoV-2 variants/subvariants in the population.

Wastewater surveillance of SARS-CoV-2 variants in October–November 2022 in Italy: detection of XBB.1, BA.2.75 and rapid spread of the BQ.1 lineage

Carraro E;Pignata C;Bonetta Si.;
2023-01-01

Abstract

This study adds insight regarding the occurrence and spread of SARS-CoV-2 Variants of Concern (VOCs) and Var-iants of Interest (VOIs) in Italy in October and November 2022, by testing urban wastewater collected through-out the country. A total of 332 wastewater samples were collected from 20 Italian Regions/Autonomous Provinces (APs) within the framework of national SARS-CoV-2 environmental surveillance. Of these, 164 were collected in the first week of October and 168 in the first week of November. A similar to 1600 bp fragment of the spike protein was sequenced by Sanger (for individual samples) and long-read nanopore sequencing (for pooled Region/AP samples).In October, mutations characteristic of Omicron BA.4/BA.5 were detected in the vast majority (91 %) of the samples amplified by Sanger sequencing. A fraction of these sequences (9 %) also displayed the R346T mutation. Despite the low prevalence documented in clinical cases at the time of sampling, amino acid substitutions characteristic of sublineages BQ.1 or BQ.1.1 were detected in 5 % of sequenced samples from four Regions/APs. A significantly higher variability of sequences and variants was documented in November 2022, when the rate of se-quences harbouring mutations of lineages BQ.1 and BQ1.1 increased to 43 %, and the number of Regions/APs positive for the new Omicron subvariant more than tripled (n = 13) compared to October. Moreover, an increase in the number of sequences with the mutation package BA.4/BA.5 + R346T (18 %), as well as the detection of variants never observed before in wastewater in Italy, such as BA.2.75 and XBB.1 (the latter in a Region where no clinical cases asso-ciated with this variant had ever been documented) was recorded.The results suggest that, as predicted by the ECDC, BQ.1/BQ.1.1 is rapidly becoming dominant in late 2022. Environ-mental surveillance proves to be a powerful tool for tracking the spread of SARS-CoV-2 variants/subvariants in the population.
2023
873
162339
162339
BA2.75; BQ.1; Omicron; SARS-CoV-2; Surveillance; Wastewater; XBB.1
La Rosa G.; Brandtner D.; Bonanno Ferraro G.; Veneri C.; Mancini P.; Iaconelli M.; Lucentini L.; Del Giudice C.; Orlandi L.; SARI network:; Carraro E; Pignata C; Bonetta Si.; Suffredini E.;
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0048969723009555-main.pdf

Accesso aperto

Descrizione: articolo pubblicato
Tipo di file: PDF EDITORIALE
Dimensione 1.37 MB
Formato Adobe PDF
1.37 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1965357
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact