Fear extinction is a phenomenon that involves a gradual reduction in conditioned fear responses through repeated exposure to fear-inducing cues. Functional brain connectivity assessments, such as functional magnetic resonance imaging (fMRI), provide valuable insights into how brain regions communicate during these processes. Stress, a ubiquitous aspect of life, influences fear learning and extinction by changing the activity of the amygdala, prefrontal cortex, and hippocampus, leading to enhanced fear responses and/or impaired extinction. Glucocorticoid receptors (GRs) are key to the stress response and show a dual function in fear regulation: while they enhance the consolidation of fear memories, they also facilitate extinction. Accordingly, GR dysregulation is associated with anxiety and mood disorders. Recent advancements in cognitive neuroscience underscore the need for a comprehensive understanding that integrates perspectives from the molecular, cellular, and systems levels. In particular, neuropharmacology provides valuable insights into neurotransmitter and receptor systems, aiding the investigation of mechanisms underlying fear regulation and potential therapeutic targets. A notable player in this context is cortisol, a key stress hormone, which significantly influences both fear memory reconsolidation and extinction processes. Gaining a thorough understanding of these intricate interactions has implications in terms of addressing psychiatric disorders related to stress. This review sheds light on the complex interactions between cognitive processes, emotions, and their neural bases. In this endeavor, our aim is to reshape the comprehension of fear, stress, and their implications for emotional well-being, ultimately aiding in the development of therapeutic interventions.

Targeting Human Glucocorticoid Receptors in Fear Learning: A Multiscale Integrated Approach to Study Functional Connectivity

Di Fazio, Chiara
Membro del Collaboration Group
;
Tamietto, Marco;Avenanti, Alessio
2024-01-01

Abstract

Fear extinction is a phenomenon that involves a gradual reduction in conditioned fear responses through repeated exposure to fear-inducing cues. Functional brain connectivity assessments, such as functional magnetic resonance imaging (fMRI), provide valuable insights into how brain regions communicate during these processes. Stress, a ubiquitous aspect of life, influences fear learning and extinction by changing the activity of the amygdala, prefrontal cortex, and hippocampus, leading to enhanced fear responses and/or impaired extinction. Glucocorticoid receptors (GRs) are key to the stress response and show a dual function in fear regulation: while they enhance the consolidation of fear memories, they also facilitate extinction. Accordingly, GR dysregulation is associated with anxiety and mood disorders. Recent advancements in cognitive neuroscience underscore the need for a comprehensive understanding that integrates perspectives from the molecular, cellular, and systems levels. In particular, neuropharmacology provides valuable insights into neurotransmitter and receptor systems, aiding the investigation of mechanisms underlying fear regulation and potential therapeutic targets. A notable player in this context is cortisol, a key stress hormone, which significantly influences both fear memory reconsolidation and extinction processes. Gaining a thorough understanding of these intricate interactions has implications in terms of addressing psychiatric disorders related to stress. This review sheds light on the complex interactions between cognitive processes, emotions, and their neural bases. In this endeavor, our aim is to reshape the comprehension of fear, stress, and their implications for emotional well-being, ultimately aiding in the development of therapeutic interventions.
2024
25
2
1
26
10.3390/ijms25020864
anxiety disorders; brain connectivity; fear extinction; glucocorticoid receptors; sex differences; stress modulation
Battaglia, Simone; Di Fazio, Chiara; Mazzà, Matteo; Tamietto, Marco; Avenanti, Alessio
File in questo prodotto:
File Dimensione Formato  
ijms-25-00864 (1).pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1968250
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact