In this introductory chapter we review the foundations of perturbative, relativistic quantum field theory. We focus on space-time and internal symmetries that are a highly successful guiding principle in the construction and classification of relativistic quantum field theories. We begin with the Poincaré group—the fundamental space-time symmetry of nature—that achieves the classification of elementary particles in terms of their masses and spins. We review scalars, fermions, gauge fields and gravity, and expose their perturbative quantisation leading to their Feynman rules. Helicity spinors are introduced that capture the polarisation and momentum degrees of freedom of the scattered particles. The internal non-Abelian gauge symmetry is reviewed and two methods for an efficient management of the colour degrees of freedom are discussed. They lead to the central concept of colour-ordered amplitudes. In the final section, we employ this colour-ordered formalism to evaluate tree-level three- and four-gluon amplitudes, and depict general classes of vanishing tree-amplitudes of gluons and gravitons.
Introduction and Foundations
Badger S.;Zoia S.
2024-01-01
Abstract
In this introductory chapter we review the foundations of perturbative, relativistic quantum field theory. We focus on space-time and internal symmetries that are a highly successful guiding principle in the construction and classification of relativistic quantum field theories. We begin with the Poincaré group—the fundamental space-time symmetry of nature—that achieves the classification of elementary particles in terms of their masses and spins. We review scalars, fermions, gauge fields and gravity, and expose their perturbative quantisation leading to their Feynman rules. Helicity spinors are introduced that capture the polarisation and momentum degrees of freedom of the scattered particles. The internal non-Abelian gauge symmetry is reviewed and two methods for an efficient management of the colour degrees of freedom are discussed. They lead to the central concept of colour-ordered amplitudes. In the final section, we employ this colour-ordered formalism to evaluate tree-level three- and four-gluon amplitudes, and depict general classes of vanishing tree-amplitudes of gluons and gravitons.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.