Post-synthesis modification of biomolecules is an efficient way of regulating and optimizing their functions. The human epitranscriptome includes a variety of more than 100 modifications known to exist in all RNA subtypes. Modifications of non-coding RNAs are particularly interesting since they can directly affect their structure, stability, interaction and function. Indeed, non-coding RNAs such as tRNA and rRNA are the most modified RNA species in eukaryotic cells. In the last 20 years, new functions of non-coding RNAs have been discovered and their involvement in human disease, including cancer, became clear. In this review, we will present the evidence connecting modifications of different non-coding RNA subtypes and their role in cancer.
The non-coding epitranscriptome in cancer
Barbieri I.
Last
2021-01-01
Abstract
Post-synthesis modification of biomolecules is an efficient way of regulating and optimizing their functions. The human epitranscriptome includes a variety of more than 100 modifications known to exist in all RNA subtypes. Modifications of non-coding RNAs are particularly interesting since they can directly affect their structure, stability, interaction and function. Indeed, non-coding RNAs such as tRNA and rRNA are the most modified RNA species in eukaryotic cells. In the last 20 years, new functions of non-coding RNAs have been discovered and their involvement in human disease, including cancer, became clear. In this review, we will present the evidence connecting modifications of different non-coding RNA subtypes and their role in cancer.File | Dimensione | Formato | |
---|---|---|---|
elab003.pdf
Accesso aperto
Dimensione
488.02 kB
Formato
Adobe PDF
|
488.02 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.