We address the following question: Given a polarized toric surface (S,L), and a general integral curve C of geometric genus g in the linear system |L|, do there exist degenerations of C in |L| to general integral curves of smaller geometric genera? We give an affirmative answer to this question for surfaces associated to h-transverse polygons, provided that the characteristic of the ground field is large enough. We give examples of surfaces in small characteristic, for which the answer to the question is negative. In case the answer is affirmative, we deduce that a general curve C as above is nodal. In characteristic 0, we use the result to show the irreducibility of Severi varieties of a large class of polarized toric surfaces with h-transverse polygon.

Degeneration of curves on some polarized toric surfaces

Christ K.;
2022-01-01

Abstract

We address the following question: Given a polarized toric surface (S,L), and a general integral curve C of geometric genus g in the linear system |L|, do there exist degenerations of C in |L| to general integral curves of smaller geometric genera? We give an affirmative answer to this question for surfaces associated to h-transverse polygons, provided that the characteristic of the ground field is large enough. We give examples of surfaces in small characteristic, for which the answer to the question is negative. In case the answer is affirmative, we deduce that a general curve C as above is nodal. In characteristic 0, we use the result to show the irreducibility of Severi varieties of a large class of polarized toric surfaces with h-transverse polygon.
2022
2022
787
197
240
https://www.degruyter.com/document/doi/10.1515/crelle-2022-0006/html
Christ K.; He X.; Tyomkin I.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1992695
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact