We assessed whether wild geladas, highly specialized terrestrial grass eaters, are lateralized for bimanual grass-plucking behavior. According to the literature, we expected that complex motor movements in grass feeding would favor the emergence of a population-level hand bias in these primates. In addition, we described geladas' manual behavior based on systematic observations of several individuals. Our study group included 28 individuals belonging to a population of free-ranging geladas frequenting the Kundi plateau, Ethiopia. We filmed monkeys while feeding on grass, and hand preference and performance were coded. Geladas performed more plucking movements per second with their left hand (LH) compared to the right one and preferred their LH both to start and finish collection bouts. Also, the rhythmic movements of each hand had a significant tendency toward isochrony. Finally, geladas used forceful pad-to-pad precision grips, in-hand movements, and compound grips to pluck and collect grass blades, considered the most advanced manual skills in primate species. The LH's leading role suggests an advantage of the right hemisphere in regulating geladas' bimanual grass-feeding behavior. The tactile input from the hands and/or rhythmic hand movements might contribute to explaining this pattern of laterality. Our findings highlighted the importance of adopting multiple laterality measures to investigate manual laterality. Moreover, the need to speed up the execution time of manual foraging might be a further important factor in studying the evolution of manual laterality and dexterity in primates.

Manual preference, performance, and dexterity for bimanual grass-feeding behavior in wild geladas (Theropithecus gelada)

Gamba M.;Caselli M.;Zanoli A.;Norscia I.
Co-last
2024-01-01

Abstract

We assessed whether wild geladas, highly specialized terrestrial grass eaters, are lateralized for bimanual grass-plucking behavior. According to the literature, we expected that complex motor movements in grass feeding would favor the emergence of a population-level hand bias in these primates. In addition, we described geladas' manual behavior based on systematic observations of several individuals. Our study group included 28 individuals belonging to a population of free-ranging geladas frequenting the Kundi plateau, Ethiopia. We filmed monkeys while feeding on grass, and hand preference and performance were coded. Geladas performed more plucking movements per second with their left hand (LH) compared to the right one and preferred their LH both to start and finish collection bouts. Also, the rhythmic movements of each hand had a significant tendency toward isochrony. Finally, geladas used forceful pad-to-pad precision grips, in-hand movements, and compound grips to pluck and collect grass blades, considered the most advanced manual skills in primate species. The LH's leading role suggests an advantage of the right hemisphere in regulating geladas' bimanual grass-feeding behavior. The tactile input from the hands and/or rhythmic hand movements might contribute to explaining this pattern of laterality. Our findings highlighted the importance of adopting multiple laterality measures to investigate manual laterality. Moreover, the need to speed up the execution time of manual foraging might be a further important factor in studying the evolution of manual laterality and dexterity in primates.
2024
86
5
1
12
https://onlinelibrary.wiley.com/doi/10.1002/ajp.23602
bimanual behavior; geladas; manual dexterity; manual laterality; rhythm
Truppa V.; Gamba M.; Togliatto R.; Caselli M.; Zanoli A.; Palagi E.; Norscia I.
File in questo prodotto:
File Dimensione Formato  
Truppa_etal_2024_AJP.pdf

Accesso aperto

Descrizione: TRUP
Tipo di file: PDF EDITORIALE
Dimensione 1.51 MB
Formato Adobe PDF
1.51 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1997651
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact