Background and objectives: Age-related macular degeneration (AMD) is a complex and multifactorial condition that can lead to permanent vision loss once it progresses to the neovascular exudative stage. This review aims to summarize the use of deep learning in neovascular AMD. Materials and Methods: Pubmed search. Results: Deep learning has demonstrated effectiveness in analyzing structural OCT images in patients with neovascular AMD. This review outlines the role of deep learning in identifying and measuring biomarkers linked to an elevated risk of transitioning to the neovascular form of AMD. Additionally, deep learning techniques can quantify critical OCT features associated with neovascular AMD, which have prognostic implications for these patients. Incorporating deep learning into the assessment of neovascular AMD eyes holds promise for enhancing clinical management strategies for affected individuals. Conclusion: Several studies have demonstrated effectiveness of deep learning in assessing neovascular AMD patients and this has a promising role in the assessment of these patients.
Deep Learning in Neovascular Age-Related Macular Degeneration
Borrelli, Enrico;Serafino, Sonia;Ricardi, Federico;Coletto, Andrea;Neri, Giovanni;Olivieri, Chiara;Ulla, Lorena;Marolo, Paola;Reibaldi, Michele
2024-01-01
Abstract
Background and objectives: Age-related macular degeneration (AMD) is a complex and multifactorial condition that can lead to permanent vision loss once it progresses to the neovascular exudative stage. This review aims to summarize the use of deep learning in neovascular AMD. Materials and Methods: Pubmed search. Results: Deep learning has demonstrated effectiveness in analyzing structural OCT images in patients with neovascular AMD. This review outlines the role of deep learning in identifying and measuring biomarkers linked to an elevated risk of transitioning to the neovascular form of AMD. Additionally, deep learning techniques can quantify critical OCT features associated with neovascular AMD, which have prognostic implications for these patients. Incorporating deep learning into the assessment of neovascular AMD eyes holds promise for enhancing clinical management strategies for affected individuals. Conclusion: Several studies have demonstrated effectiveness of deep learning in assessing neovascular AMD patients and this has a promising role in the assessment of these patients.File | Dimensione | Formato | |
---|---|---|---|
medicina-60-00990 (1).pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
578.77 kB
Formato
Adobe PDF
|
578.77 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.