Young supernova remnants strongly modify the surrounding magnetic fields, which in turn play an essential role in accelerating cosmic rays (CRs). The X-ray polarization measurements probe magnetic field morphology and turbulence at the immediate acceleration site. We report the X-ray polarization distribution in the northeastern shell of SN 1006 from a 1 Ms observation with the Imaging X-ray Polarimetry Explorer. We found an average polarization degree of 22.4% ± 3.5% and an average polarization angle of −45.°4 ± 4.°5 (measured on the plane of the sky from north to east). The X-ray polarization angle distribution reveals that the magnetic fields immediately behind the shock in the northeastern shell of SN 1006 are nearly parallel to the shock normal or radially distributed, similar to that in the radio observations, and consistent with the quasi-parallel CR acceleration scenario. The X-ray emission is marginally more polarized than that in the radio band. The X-ray polarization degree of SN 1006 is much larger than that in Cas A and Tycho, together with the relatively tenuous and smooth ambient medium of the remnant, favoring that CR-induced instabilities set the magnetic turbulence in SN 1006, and CR acceleration is environment-dependent.

Magnetic Structures and Turbulence in SN 1006 Revealed with Imaging X-Ray Polarimetry

Bonino R.;Latronico L.;Maldera S.;Negro M.;
2023-01-01

Abstract

Young supernova remnants strongly modify the surrounding magnetic fields, which in turn play an essential role in accelerating cosmic rays (CRs). The X-ray polarization measurements probe magnetic field morphology and turbulence at the immediate acceleration site. We report the X-ray polarization distribution in the northeastern shell of SN 1006 from a 1 Ms observation with the Imaging X-ray Polarimetry Explorer. We found an average polarization degree of 22.4% ± 3.5% and an average polarization angle of −45.°4 ± 4.°5 (measured on the plane of the sky from north to east). The X-ray polarization angle distribution reveals that the magnetic fields immediately behind the shock in the northeastern shell of SN 1006 are nearly parallel to the shock normal or radially distributed, similar to that in the radio observations, and consistent with the quasi-parallel CR acceleration scenario. The X-ray emission is marginally more polarized than that in the radio band. The X-ray polarization degree of SN 1006 is much larger than that in Cas A and Tycho, together with the relatively tenuous and smooth ambient medium of the remnant, favoring that CR-induced instabilities set the magnetic turbulence in SN 1006, and CR acceleration is environment-dependent.
2023
Inglese
Esperti anonimi
957
1
55
66
12
https://arxiv.org/abs/2309.01879
FRANCIA
GERMANIA
STATI UNITI D'AMERICA
GIAPPONE
4 – prodotto già presente in altro archivio Open Access (arXiv, REPEC…)
262
102
Zhou P.; Prokhorov D.; Ferrazzoli R.; Yang Y.-J.; Slane P.; Vink J.; Silvestri S.; Bucciantini N.; Reynoso E.; Moffett D.; Soffitta P.; Swartz D.; Kaa...espandi
info:eu-repo/semantics/article
none
03-CONTRIBUTO IN RIVISTA::03A-Articolo su Rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1999491
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact