This paper reports the first detection of polarization in the X-rays for atoll-source 4U 1820−303, obtained with the Imaging X-ray Polarimetry Explorer (IXPE) at 99.999% confidence level (CL). Simultaneous polarimetric measurements were also performed in the radio with the Australia Telescope Compact Array. The IXPE observations of 4U 1820−303 were coordinated with Swift X-ray Telescope, Neutron Star Interior Composition Explorer, and Nuclear Spectroscopic Telescope Array aiming to obtain an accurate X-ray spectral model covering a broad energy interval. The source shows a significant polarization above 4 keV, with a polarization degree of 2.0% ± 0.5% and a polarization angle of −55° ± 7° in the 4-7 keV energy range, and a polarization degree of 10% ± 2% and a polarization angle of −67° ± 7° in the 7-8 keV energy bin. This polarization also shows a clear energy trend with polarization degree increasing with energy and a hint for a position-angle change of ≃90° at 96% CL around 4 keV. The spectro-polarimetric fit indicates that the accretion disk is polarized orthogonally to the hard spectral component, which is presumably produced in the boundary/spreading layer. We do not detect linear polarization from the radio counterpart, with a 3σ upper limit of 50% at 7.25 GHz.

First Detection of X-Ray Polarization from the Accreting Neutron Star 4U 1820−303

Bonino R.;Massaro F.;
2023-01-01

Abstract

This paper reports the first detection of polarization in the X-rays for atoll-source 4U 1820−303, obtained with the Imaging X-ray Polarimetry Explorer (IXPE) at 99.999% confidence level (CL). Simultaneous polarimetric measurements were also performed in the radio with the Australia Telescope Compact Array. The IXPE observations of 4U 1820−303 were coordinated with Swift X-ray Telescope, Neutron Star Interior Composition Explorer, and Nuclear Spectroscopic Telescope Array aiming to obtain an accurate X-ray spectral model covering a broad energy interval. The source shows a significant polarization above 4 keV, with a polarization degree of 2.0% ± 0.5% and a polarization angle of −55° ± 7° in the 4-7 keV energy range, and a polarization degree of 10% ± 2% and a polarization angle of −67° ± 7° in the 7-8 keV energy bin. This polarization also shows a clear energy trend with polarization degree increasing with energy and a hint for a position-angle change of ≃90° at 96% CL around 4 keV. The spectro-polarimetric fit indicates that the accretion disk is polarized orthogonally to the hard spectral component, which is presumably produced in the boundary/spreading layer. We do not detect linear polarization from the radio counterpart, with a 3σ upper limit of 50% at 7.25 GHz.
2023
Inglese
Esperti anonimi
953
2
1
13
13
https://arxiv.org/abs/2306.08476
FRANCIA
GERMANIA
STATI UNITI D'AMERICA
GIAPPONE
4 – prodotto già presente in altro archivio Open Access (arXiv, REPEC…)
262
119
Di Marco A.; La Monaca F.; Poutanen J.; Russell T.D.; Anitra A.; Farinelli R.; Mastroserio G.; Muleri F.; Xie F.; Bachetti M.; Burderi L.; Carotenuto ...espandi
info:eu-repo/semantics/article
none
03-CONTRIBUTO IN RIVISTA::03A-Articolo su Rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1999733
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
social impact