The Imaging X-ray Polarimetry Explorer measured with high significance the X-ray polarization of the brightest Z-source, Sco X-1, resulting in the nominal 2-8 keV energy band in a polarization degree of 1.0% ± 0.2% and a polarization angle of 8° ± 6° at a 90% confidence level. This observation was strictly simultaneous with observations performed by NICER, NuSTAR, and Insight-HXMT, which allowed for a precise characterization of its broadband spectrum from soft to hard X-rays. The source has been observed mainly in its soft state, with short periods of flaring. We also observed low-frequency quasiperiodic oscillations. From a spectropolarimetric analysis, we associate a polarization to the accretion disk at <3.2% at 90% confidence level, compatible with expectations for an electron scattering dominated optically thick atmosphere at the Sco X-1 inclination of ∼44°; for the higher-energy Comptonized component, we obtain a polarization of 1.3% ± 0.4%, in agreement with expectations for a slab of Thomson optical depth of ∼7 and an electron temperature of ∼3 keV. A polarization rotation with respect to previous observations by OSO-8 and PolarLight, and also with respect to the radio-jet position angle, is observed. This result may indicate a variation of the polarization with the source state that can be related to relativistic precession or a change in the corona geometry with the accretion flow.

Highly Significant Detection of X-Ray Polarization from the Brightest Accreting Neutron Star Sco X-1

Bonino R.;Massaro F.;
2024-01-01

Abstract

The Imaging X-ray Polarimetry Explorer measured with high significance the X-ray polarization of the brightest Z-source, Sco X-1, resulting in the nominal 2-8 keV energy band in a polarization degree of 1.0% ± 0.2% and a polarization angle of 8° ± 6° at a 90% confidence level. This observation was strictly simultaneous with observations performed by NICER, NuSTAR, and Insight-HXMT, which allowed for a precise characterization of its broadband spectrum from soft to hard X-rays. The source has been observed mainly in its soft state, with short periods of flaring. We also observed low-frequency quasiperiodic oscillations. From a spectropolarimetric analysis, we associate a polarization to the accretion disk at <3.2% at 90% confidence level, compatible with expectations for an electron scattering dominated optically thick atmosphere at the Sco X-1 inclination of ∼44°; for the higher-energy Comptonized component, we obtain a polarization of 1.3% ± 0.4%, in agreement with expectations for a slab of Thomson optical depth of ∼7 and an electron temperature of ∼3 keV. A polarization rotation with respect to previous observations by OSO-8 and PolarLight, and also with respect to the radio-jet position angle, is observed. This result may indicate a variation of the polarization with the source state that can be related to relativistic precession or a change in the corona geometry with the accretion flow.
2024
Inglese
Esperti anonimi
960
2
1
15
15
https://arxiv.org/abs/2311.06359
FRANCIA
GERMANIA
STATI UNITI D'AMERICA
GIAPPONE
4 – prodotto già presente in altro archivio Open Access (arXiv, REPEC…)
262
119
La Monaca F.; Di Marco A.; Poutanen J.; Bachetti M.; Motta S.E.; Papitto A.; Pilia M.; Xie F.; Bianchi S.; Bobrikova A.; Costa E.; Deng W.; Ge M.-Y.; ...espandi
info:eu-repo/semantics/article
none
03-CONTRIBUTO IN RIVISTA::03A-Articolo su Rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2000170
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact