Glyphosate is the most widely used systemic herbicide. There is ample scientific literature on the effects of this compound and its metabolite aminomethylphosphonic acid (AMPA), whereas their possible combined genotoxic action has not yet been studied. With the present study, we aimed to determine the level of genomic damage caused by glyphosate and AMPA in cultured human lymphocytes and to investigate the possible genotoxic action when both compounds were present at the same concentrations in the cultures. We used a micronuclei assay to test the genotoxicity of glyphosate and AMPA at six concentrations (0.0125, 0.025, 0.050, 0.100, 0.250, 0.500 μg/mL), which are more realistic than the highest concentrations used in previous published studies. Our data showed an increase in micronuclei frequency after treatment with both glyphosate and AMPA tarting from 0.050 μg/mL up to 0.500 μg/mL. Similarly, a genomic damage was observed also in the cultures treated with the same concentrations of both compounds, except for exposure to 0.0065 and 0.0125 μg/mL. No synergistic action was observed. Finally, a significant increase in apoptotic cells was observed in cultures treated with the highest concentration of tested xenobiotics, while a significant increase in necrotic cells was observed also at the concentration of 0.250 μg/mL of both glyphosate and AMPA alone and in combination (0.125 + 0.125 μg/mL). Results of our study indicate that both glyphosate and its metabolite AMPA are able to cause genomic damage in human lymphocyte cultures, both alone and when present in equal concentrations.
In vitro genomic damage caused by glyphosate and its metabolite AMPA
Alfredo Santovito
First
Membro del Collaboration Group
;Alessandro NotaMembro del Collaboration Group
;Claudio GendusaMembro del Collaboration Group
;
2024-01-01
Abstract
Glyphosate is the most widely used systemic herbicide. There is ample scientific literature on the effects of this compound and its metabolite aminomethylphosphonic acid (AMPA), whereas their possible combined genotoxic action has not yet been studied. With the present study, we aimed to determine the level of genomic damage caused by glyphosate and AMPA in cultured human lymphocytes and to investigate the possible genotoxic action when both compounds were present at the same concentrations in the cultures. We used a micronuclei assay to test the genotoxicity of glyphosate and AMPA at six concentrations (0.0125, 0.025, 0.050, 0.100, 0.250, 0.500 μg/mL), which are more realistic than the highest concentrations used in previous published studies. Our data showed an increase in micronuclei frequency after treatment with both glyphosate and AMPA tarting from 0.050 μg/mL up to 0.500 μg/mL. Similarly, a genomic damage was observed also in the cultures treated with the same concentrations of both compounds, except for exposure to 0.0065 and 0.0125 μg/mL. No synergistic action was observed. Finally, a significant increase in apoptotic cells was observed in cultures treated with the highest concentration of tested xenobiotics, while a significant increase in necrotic cells was observed also at the concentration of 0.250 μg/mL of both glyphosate and AMPA alone and in combination (0.125 + 0.125 μg/mL). Results of our study indicate that both glyphosate and its metabolite AMPA are able to cause genomic damage in human lymphocyte cultures, both alone and when present in equal concentrations.File | Dimensione | Formato | |
---|---|---|---|
Chemosphere Gly+AMPA pubblicazione FINALE.pdf
Accesso aperto
Dimensione
5.49 MB
Formato
Adobe PDF
|
5.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.