This study aims to provide possible utilization of sunflower head byproduct (SFH) as a feedstuff by implementing chemical pretreatments (4% sodium hydroxide (SFHNaOH) or 4% urea (SFHurea) and supplementation with either exogenous fibrolytic enzymes (EFE) or functional feed additive (FFA). The experimental EFE was a complex (1:1, v/v) of two enzyme products with high activity of β-1,3-1,4-glucanase and endo-1,4-β-D-xylanase and applied at 0 (SFHout), 1, 2, 5, and 10 µL/ gdry matter, while FFA was a fermentation byproduct rich in cellulase and xylanase activities, applied at 0 (SFHout), 0.5, 1, 2, and 4 mg/g DM. SFHurea had the highest (p < 0.05) crude protein (CP) content compared to other SFH substrates. Linear enhancements (p < 0.05) in kinetics of gas production (GP), metabolizable energy (ME), organic matter digestibility (OMD) and total short-chain fatty acids (SCFAs) concentrations were observed for all SFH substrates supplemented with EFE. The SFHout had the highest (p < 0.05) potential GP, maximum rate (Rmax) of GP, ME, OMD and SCFAs. Supplementation of EFE was more pronounced than FFA in affecting the kinetic parameters of in vitro GP for all SFH substrates. SFHout supplemented with EFE seems to be the most promising substrate to enhance microbial fermentation in vitro.

Effect of Exogenous Fibrolytic Enzymes Supplementation or Functional Feed Additives on In Vitro Ruminal Fermentation of Chemically Pre-Treated Sunflower Heads

Abid K.;
2022-01-01

Abstract

This study aims to provide possible utilization of sunflower head byproduct (SFH) as a feedstuff by implementing chemical pretreatments (4% sodium hydroxide (SFHNaOH) or 4% urea (SFHurea) and supplementation with either exogenous fibrolytic enzymes (EFE) or functional feed additive (FFA). The experimental EFE was a complex (1:1, v/v) of two enzyme products with high activity of β-1,3-1,4-glucanase and endo-1,4-β-D-xylanase and applied at 0 (SFHout), 1, 2, 5, and 10 µL/ gdry matter, while FFA was a fermentation byproduct rich in cellulase and xylanase activities, applied at 0 (SFHout), 0.5, 1, 2, and 4 mg/g DM. SFHurea had the highest (p < 0.05) crude protein (CP) content compared to other SFH substrates. Linear enhancements (p < 0.05) in kinetics of gas production (GP), metabolizable energy (ME), organic matter digestibility (OMD) and total short-chain fatty acids (SCFAs) concentrations were observed for all SFH substrates supplemented with EFE. The SFHout had the highest (p < 0.05) potential GP, maximum rate (Rmax) of GP, ME, OMD and SCFAs. Supplementation of EFE was more pronounced than FFA in affecting the kinetic parameters of in vitro GP for all SFH substrates. SFHout supplemented with EFE seems to be the most promising substrate to enhance microbial fermentation in vitro.
2022
12
5
1
16
chemical composition; chemical pretreatments; digestibility; exogeneous enzymes; feed additive; in vitro; sunflower head
Jabri J.; Ammar H.; Abid K.; Beckers Y.; Yaich H.; Malek A.; Rekhis J.; Morsy A.S.; Soltan Y.A.; Soufan W.; Almadani M.I.; Chahine M.; Marti M.E.D.H.;...espandi
File in questo prodotto:
File Dimensione Formato  
2022 Effect of Exogenous Fibrolytic Enzymes Supplementation or Functional Feed Additives on In Vitro Ruminal Fermentation of Chemically Pre-Treated Sunflower Head.pdf

Accesso aperto

Dimensione 862.99 kB
Formato Adobe PDF
862.99 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2004170
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact