Cardiac resynchronization therapy (CRT) significantly improves clinical outcomes in patients with ventricular systolic dysfunction and dyssynchrony. Biventricular pacing (BVP) has a class IA recommendation for patients with symptomatic heart failure with reduced ejection fraction (HFrEF) and left bundle branch block (LBBB). However, approximately 30% of patients have a poor therapeutic response and do not achieve real clinical benefit. Pre-implant imaging, together with tailored programming and dedicated device algorithms, have been proposed as possible tools to improve success rate but have shown inconsistent results. Over the last few years, conduction system pacing (CSP) is becoming a real and attractive alternative to standard BVP as it can restore narrow QRS in patients with bundle branch block (BBB) by stimulating and recruiting the cardiac conduction system, thus ensuring true resynchronization. It includes His bundle pacing (HBP) and left bundle branch area pacing (LBBAP). Preliminary data coming from small single-center experiences are very promising and have laid the basis for currently ongoing randomized controlled trials comparing CSP with BVP. The purpose of this review is to delve into the emerging role of CSP as an alternative method of achieving CRT. After framing CSP in a historical perspective, the pathophysiological rationale and available clinical evidence will be examined, and crucial technical aspects will be discussed. Finally, evidence gaps and future perspectives on CSP as a technique of choice to deliver CRT will be summarized.

Is Conduction System Pacing a Valuable Alternative to Biventricular Pacing for Cardiac Resynchronization Therapy?

Castagno, Davide
First
;
De Ferrari, Gaetano Maria;
2024-01-01

Abstract

Cardiac resynchronization therapy (CRT) significantly improves clinical outcomes in patients with ventricular systolic dysfunction and dyssynchrony. Biventricular pacing (BVP) has a class IA recommendation for patients with symptomatic heart failure with reduced ejection fraction (HFrEF) and left bundle branch block (LBBB). However, approximately 30% of patients have a poor therapeutic response and do not achieve real clinical benefit. Pre-implant imaging, together with tailored programming and dedicated device algorithms, have been proposed as possible tools to improve success rate but have shown inconsistent results. Over the last few years, conduction system pacing (CSP) is becoming a real and attractive alternative to standard BVP as it can restore narrow QRS in patients with bundle branch block (BBB) by stimulating and recruiting the cardiac conduction system, thus ensuring true resynchronization. It includes His bundle pacing (HBP) and left bundle branch area pacing (LBBAP). Preliminary data coming from small single-center experiences are very promising and have laid the basis for currently ongoing randomized controlled trials comparing CSP with BVP. The purpose of this review is to delve into the emerging role of CSP as an alternative method of achieving CRT. After framing CSP in a historical perspective, the pathophysiological rationale and available clinical evidence will be examined, and crucial technical aspects will be discussed. Finally, evidence gaps and future perspectives on CSP as a technique of choice to deliver CRT will be summarized.
2024
11
5
2
18
His bundle pacing; biventricular pacing; cardiac resynchronization therapy; conduction system pacing; left bundle branch area pacing
Castagno, Davide; Zanon, Francesco; Pastore, Gianni; De Ferrari, Gaetano Maria; Marcantoni, Lina
File in questo prodotto:
File Dimensione Formato  
jcdd-11-00144-v2.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 5.76 MB
Formato Adobe PDF
5.76 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2007434
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact