Let (M, J, g, omega) be a Hermitian manifold of complex dimension n. Assume that the torsion of the Chern connection del is bounded, and that there exists a C(infinity)exhausting function rho : M -> R such that del rho, del(2)rho are bounded. We characterize W-1,W-2 Bott-Chern harmonic forms, extending the usual result that holds on compact Hermitian manifolds. Finally, if (M, J, g, omega) is Kahler complete, omega = d eta, with eta bounded, and the sectional curvature is bounded, then we get a vanishing theorem for W-1,W-2 Bott-Chern harmonic (p, q)-forms, if p + q not equal n.
Bott–Chern harmonic forms on complete Hermitian manifolds
Piovani, Riccardo;
2019-01-01
Abstract
Let (M, J, g, omega) be a Hermitian manifold of complex dimension n. Assume that the torsion of the Chern connection del is bounded, and that there exists a C(infinity)exhausting function rho : M -> R such that del rho, del(2)rho are bounded. We characterize W-1,W-2 Bott-Chern harmonic forms, extending the usual result that holds on compact Hermitian manifolds. Finally, if (M, J, g, omega) is Kahler complete, omega = d eta, with eta bounded, and the sectional curvature is bounded, then we get a vanishing theorem for W-1,W-2 Bott-Chern harmonic (p, q)-forms, if p + q not equal n.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2) piovani tomassini bc hermitian ijm.pdf
Accesso riservato
Dimensione
245.98 kB
Formato
Adobe PDF
|
245.98 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.