We establish a priori $L^\infty$-estimates for non-negative solutions of a semilinear nonlocal Neumann problem. As a consequence of these estimates, we get non-existence of non-constant solutions under suitable assumptions on the diffusion coefficient and on the nonlinearity. Moreover, we prove an existence result for radial, radially non-decreasing solutions in the case of a possible supercritical nonlinearity, extending to the case $0

Existence and non-existence results for a semilinear fractional Neumann problem

Eleonora Cinti;Francesca Colasuonno
2023-01-01

Abstract

We establish a priori $L^\infty$-estimates for non-negative solutions of a semilinear nonlocal Neumann problem. As a consequence of these estimates, we get non-existence of non-constant solutions under suitable assumptions on the diffusion coefficient and on the nonlinearity. Moreover, we prove an existence result for radial, radially non-decreasing solutions in the case of a possible supercritical nonlinearity, extending to the case $0
2023
30
6
1
20
https://link.springer.com/article/10.1007/s00030-023-00886-4
A priori estimates; Moser iteration; nonlocal Neumann problem
Eleonora Cinti; Francesca Colasuonno
File in questo prodotto:
File Dimensione Formato  
published_NoDEA-s00030-023-00886-4.pdf

Accesso riservato

Dimensione 437.51 kB
Formato Adobe PDF
437.51 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2009735
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact