The cure kinetics of various epoxy resin mixtures, comprising a bisphenol epoxy, two epoxy modifiers, and two hardening agents derived from cardanol technology, were inves tigated through differential scanning calorimetry (DSC). The development of these mixtures aimed to achieve epoxy materials with a substantial bio-content up to 50% for potential automotive ap plications, aligning with the 2019 European Regulation on climate neutrality and CO2 emission. The Friedman isoconversional method was employed to determine key kinetic parameters, such as activation energy and pre-exponential factor, providing insights into the cross-linking process and the Kamal–Sourour model was used to describe and predict the kinetics of the chemical re actions. This empirical approach was implemented to forecast the curing process for the specific oven curing cycle utilised. Additionally, tensile tests revealed promising results showcasing materi als’ viability against conventional counterparts. Overall, this investigation offers a comprehensive understanding of the cure kinetics, mechanical behaviour, and thermal properties of the novel epoxy– novolac blends, contributing to the development of high-performance materials for sustainable automotive applications.

Cross-Linking Reaction of Bio-Based Epoxy Systems: An Investigation into Cure Kinetics

Di Matteo, Pietro
First
;
Brunella, Valentina
2024-01-01

Abstract

The cure kinetics of various epoxy resin mixtures, comprising a bisphenol epoxy, two epoxy modifiers, and two hardening agents derived from cardanol technology, were inves tigated through differential scanning calorimetry (DSC). The development of these mixtures aimed to achieve epoxy materials with a substantial bio-content up to 50% for potential automotive ap plications, aligning with the 2019 European Regulation on climate neutrality and CO2 emission. The Friedman isoconversional method was employed to determine key kinetic parameters, such as activation energy and pre-exponential factor, providing insights into the cross-linking process and the Kamal–Sourour model was used to describe and predict the kinetics of the chemical re actions. This empirical approach was implemented to forecast the curing process for the specific oven curing cycle utilised. Additionally, tensile tests revealed promising results showcasing materi als’ viability against conventional counterparts. Overall, this investigation offers a comprehensive understanding of the cure kinetics, mechanical behaviour, and thermal properties of the novel epoxy– novolac blends, contributing to the development of high-performance materials for sustainable automotive applications.
2024
16
17
1
18
https://doi.org/10.3390/polym16172499
bio-based; curing; differential scanning calorimetry; epoxy resin; kinetic analysis; modelling
Di Matteo, Pietro; Iadarola, Andrea; Ciardiello, Raffaele; Paolino, Davide Salvatore; Gazza, Francesco; Lambertini, Vito Guido; Brunella, Valentina...espandi
File in questo prodotto:
File Dimensione Formato  
polymers-16-02499.pdf

Accesso aperto

Descrizione: PAPER
Tipo di file: PDF EDITORIALE
Dimensione 2.49 MB
Formato Adobe PDF
2.49 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2010390
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact