The potential of utilizing inorganic constituents in processed animal proteins (PAPs) for species identification in animal feeds was investigated, with the aim of using these constituents to ensure the quality and authenticity of the products. This study aimed to quantify the inorganic content across various PAP species and assess whether inorganic analysis could effectively differentiate between PAP species, ultimately aiding in the identification of PAP fractions in animal feeds. Four types of PAPs, namely bovine, swine, poultry, and fish-based, were analyzed and compared to others made up of feathers of vegetal-based feed. Also, three insect-based PAPs (Cricket, Silkworm, Flour Moth) were considered in this study to evaluate the differences in terms of the nutrients present in this type of feed. Ionic chromatography (IC) was used to reveal the concentrations of NO3−, NO2, Cl−, and SO42−, and inductively coupled plasma optical emission spectroscopy (ICP-OES) to detect Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P, Si, Sr, Ti, and Zn. The application of multivariate chemometric techniques to the experimental results allowed us to determine the identification capability of the inorganic composition to identify correlations among the variables and to reveal similarities and differences among the different species. The results show the possibility of using this component for discriminating between different PAPS; in particular, fish PAPs are high in Cd, Sr, Na, and Mg content; swine PAPs have lower metal content due to high fat; feathers and vegetal feed have similar Al, Si, and Ni, but feathers are higher in Fe and Zn; and insect PATs have nutrient levels comparable to PAPs of other origins but are very high in Zn, Cu, and K.
Inorganic Characterization of Feeds Based on Processed Animal Protein Feeds
Inaudi P.
First
;Malandrino M.;Abollino O.;Favilli L.;Bertinetti S.;Giacomino A.
Last
2024-01-01
Abstract
The potential of utilizing inorganic constituents in processed animal proteins (PAPs) for species identification in animal feeds was investigated, with the aim of using these constituents to ensure the quality and authenticity of the products. This study aimed to quantify the inorganic content across various PAP species and assess whether inorganic analysis could effectively differentiate between PAP species, ultimately aiding in the identification of PAP fractions in animal feeds. Four types of PAPs, namely bovine, swine, poultry, and fish-based, were analyzed and compared to others made up of feathers of vegetal-based feed. Also, three insect-based PAPs (Cricket, Silkworm, Flour Moth) were considered in this study to evaluate the differences in terms of the nutrients present in this type of feed. Ionic chromatography (IC) was used to reveal the concentrations of NO3−, NO2, Cl−, and SO42−, and inductively coupled plasma optical emission spectroscopy (ICP-OES) to detect Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P, Si, Sr, Ti, and Zn. The application of multivariate chemometric techniques to the experimental results allowed us to determine the identification capability of the inorganic composition to identify correlations among the variables and to reveal similarities and differences among the different species. The results show the possibility of using this component for discriminating between different PAPS; in particular, fish PAPs are high in Cd, Sr, Na, and Mg content; swine PAPs have lower metal content due to high fat; feathers and vegetal feed have similar Al, Si, and Ni, but feathers are higher in Fe and Zn; and insect PATs have nutrient levels comparable to PAPs of other origins but are very high in Zn, Cu, and K.File | Dimensione | Formato | |
---|---|---|---|
Inaudi et al, 2024_.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
1.03 MB
Formato
Adobe PDF
|
1.03 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.