In the context of global climate change, drought occurrence in streams of alpine origin is a recent phenomenon, whose impact is still poorly investigated. In this study, we adopted a threedisciplinary approach to investigate the response of an Alpine river (NW Italy) to severe drought conditions occurred in the year 2022. We hypothesised that the considerable loss in the water flow could exacerbate wastewater treatment plant (WWTP) discharge effects, lowering dilution capacity of the stream system and then increasing chemical/microbial pollution and altering benthic community characteristics. To assess river response to drought conditions of the considered year, the concentration of the main chemical variables, faecal indicator bacteria, pathogen presence and structural/functional organisation of benthic macroinvertebrates and diatom communities were measured monthly in the reaches located upstream and downstream of a WWTP (January-December 2022). Main environmental variables, such as flow velocity, water depth, and flow regime, were also considered. A multivariate analysis approach was then applied to emphasise correlations between selected variables and flow regime. Comparing upstream and downstream sections over the considered year, a common behaviour of chemical/microbiological parameters was observed, with generally higher concentrations of nutrients and bacterial indicators downstream of the local WWTP. Moreover, a positive correlation between water scarcity and nutrients/bacterial concentrations was revealed. The macroinvertebrate communities responded accordingly, both in terms of density and biological metric shift. Interestingly, differences between the two sections were strictly associated with hydrological conditions, with higher dissimilarities found in low-flow conditions. As the magnitude and duration of drought events are projected to increase in the years to come in different parts of Europe, this work can serve as a first building block and as a hint for future studies aimed at improving our knowledge about the consequences of these events that is pivotal for planning effective management strategies.

Impact of wastewater treatment and drought in an Alpine region: a multidisciplinary case study

Marino, Anna
First
;
Bertolotti, Silvia
;
Macri, Manuela
;
Bona, Francesca;Bonetta, Silvia;Falasco, Elisa;Minella, Marco;Fenoglio, Stefano
Last
2024-01-01

Abstract

In the context of global climate change, drought occurrence in streams of alpine origin is a recent phenomenon, whose impact is still poorly investigated. In this study, we adopted a threedisciplinary approach to investigate the response of an Alpine river (NW Italy) to severe drought conditions occurred in the year 2022. We hypothesised that the considerable loss in the water flow could exacerbate wastewater treatment plant (WWTP) discharge effects, lowering dilution capacity of the stream system and then increasing chemical/microbial pollution and altering benthic community characteristics. To assess river response to drought conditions of the considered year, the concentration of the main chemical variables, faecal indicator bacteria, pathogen presence and structural/functional organisation of benthic macroinvertebrates and diatom communities were measured monthly in the reaches located upstream and downstream of a WWTP (January-December 2022). Main environmental variables, such as flow velocity, water depth, and flow regime, were also considered. A multivariate analysis approach was then applied to emphasise correlations between selected variables and flow regime. Comparing upstream and downstream sections over the considered year, a common behaviour of chemical/microbiological parameters was observed, with generally higher concentrations of nutrients and bacterial indicators downstream of the local WWTP. Moreover, a positive correlation between water scarcity and nutrients/bacterial concentrations was revealed. The macroinvertebrate communities responded accordingly, both in terms of density and biological metric shift. Interestingly, differences between the two sections were strictly associated with hydrological conditions, with higher dissimilarities found in low-flow conditions. As the magnitude and duration of drought events are projected to increase in the years to come in different parts of Europe, this work can serve as a first building block and as a hint for future studies aimed at improving our knowledge about the consequences of these events that is pivotal for planning effective management strategies.
2024
10
15
1
13
https://www.sciencedirect.com/science/article/pii/S2405844024113217
Alpine rivers; Drought periods; Hydrologic regime; Wastewater treatment plants; Water quality and management; Water shortage
Marino, Anna; Bertolotti, Silvia; Macri, Manuela; Bona, Francesca; Bonetta, Silvia; Falasco, Elisa; Minella, Marco; Fenoglio, Stefano
File in questo prodotto:
File Dimensione Formato  
Marino et al. 2024.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 4.66 MB
Formato Adobe PDF
4.66 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2013310
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact