This article provides an algebraic study of the propositional system InqB of inquisitive logic. We also investigate the wider class of DNA-logics, which are negative variants of intermediate logics, and the corresponding algebraic structures, DNA -varieties. We prove that the lattice of DNA-logics is dually isomorphic to the lattice of DNA -varieties. We characterise maximal and minimal intermediate logics with the same negative variant, and we prove a suitable version of Birkhoff's classic variety theorems. We also introduce locally finite DNA -varieties and show that these varieties are axiomatised by the analogues of Jankov formulas. Finally, we prove that the lattice of extensions of InqB is dually isomorphic to the ordinal omega + 1 and give an axiomatisation of these logics via Jankov DNA -formulas. This shows that these extensions coincide with the so-called inquisitive hierarchy of [9].(1)

AN ALGEBRAIC APPROACH TO INQUISITIVE AND -LOGICS

QUADRELLARO, DAVIDE EMILIO
2021-01-01

Abstract

This article provides an algebraic study of the propositional system InqB of inquisitive logic. We also investigate the wider class of DNA-logics, which are negative variants of intermediate logics, and the corresponding algebraic structures, DNA -varieties. We prove that the lattice of DNA-logics is dually isomorphic to the lattice of DNA -varieties. We characterise maximal and minimal intermediate logics with the same negative variant, and we prove a suitable version of Birkhoff's classic variety theorems. We also introduce locally finite DNA -varieties and show that these varieties are axiomatised by the analogues of Jankov formulas. Finally, we prove that the lattice of extensions of InqB is dually isomorphic to the ordinal omega + 1 and give an axiomatisation of these logics via Jankov DNA -formulas. This shows that these extensions coincide with the so-called inquisitive hierarchy of [9].(1)
2021
15
4
950
990
inquisitive logic; intermediate logics; negative variants; Heyting algebras; algebraic semantics
BEZHANISHVILI, NICK; GRILLETTI, GIANLUCA; QUADRELLARO, DAVIDE EMILIO
File in questo prodotto:
File Dimensione Formato  
Paper.pdf

Accesso aperto

Dimensione 502.18 kB
Formato Adobe PDF
502.18 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2015430
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact