For every univariate formula chi (i.e., containing at most one atomic proposition) we introduce a lattice of intermediate theories: the lattice of chi-logics. The key idea to define chi-logics is to interpret atomic propositions as fixpoints of the formula chi(2), which can be characterised syntactically using Ruitenburg's theorem. We show that chi-logics form a lattice, dually isomorphic to a special class of varieties of Heyting algebras. This approach allows us to build and describe five distinct lattices-corresponding to the possible fixpoints of univariate formulas-among which the lattice of negative variants of intermediate logics.

Lattices of Intermediate Theories via Ruitenburg’s Theorem

Quadrellaro, Davide Emilio
2022-01-01

Abstract

For every univariate formula chi (i.e., containing at most one atomic proposition) we introduce a lattice of intermediate theories: the lattice of chi-logics. The key idea to define chi-logics is to interpret atomic propositions as fixpoints of the formula chi(2), which can be characterised syntactically using Ruitenburg's theorem. We show that chi-logics form a lattice, dually isomorphic to a special class of varieties of Heyting algebras. This approach allows us to build and describe five distinct lattices-corresponding to the possible fixpoints of univariate formulas-among which the lattice of negative variants of intermediate logics.
2022
Inglese
Language, Logic, and Computation -- 13th International Tbilisi Symposium, TbiLLC 2019, Batumi, Georgia, September 16–20, 2019, Revised Selected Papers
Esperti anonimi
SPRINGER INTERNATIONAL PUBLISHING AG
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SVIZZERA
13206 LNCS
297
322
26
9783030984786
9783030984793
4 – prodotto già presente in altro archivio Open Access (arXiv, REPEC…)
Grilletti, Gianluca; Quadrellaro, Davide Emilio
2
info:eu-repo/semantics/bookPart
02-CAPITOLO DI LIBRO::02A-Contributo in volume
268
open
File in questo prodotto:
File Dimensione Formato  
2004.00989v1.pdf

Accesso aperto

Dimensione 308.28 kB
Formato Adobe PDF
308.28 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2015450
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact