Effective live-imaging techniques are crucial to assess neuronal morphology in order to measure neurite outgrowth in real time. The proper measurement of neurite outgrowth has been a long-standing challenge over the years in the neuroscience research field. This parameter serves as a cornerstone in numerous in vitro experimental setups, ranging from dissociated cultures and organotypic cultures to cell lines. By quantifying the neurite length, it is possible to determine if a specific treatment worked or if axonal regeneration is enhanced in different experimental groups. In this study, the aim is to demonstrate the robustness and accuracy of the Incucyte Neurotrack neurite outgrowth analysis software. This semi-automatic software is available in a time-lapse microscopy system which offers several advantages over commonly used methodologies in the quantification of the neurite length in phase contrast images. The algorithm masks and quantifies several parameters in each image and returns neuronal cell metrics, including neurite length, branch points, cell-body clusters, and cell-body cluster areas. Firstly, we validated the robustness and accuracy of the software by correlating its values with those of the manual NeuronJ, a Fiji plugin. Secondly, we used the algorithm which is able to work both on phase contrast images as well as on immunocytochemistry images. Using specific neuronal markers, we validated the feasibility of the fluorescence-based neurite outgrowth analysis on sensory neurons in vitro cultures. Additionally, this software can measure neurite length across various seeding conditions, ranging from individual cells to complex neuronal nets. In conclusion, the software provides an innovative and time-effective platform for neurite outgrowth assays, paving the way for faster and more reliable quantifications.

Standardization of a Novel Semi-Automatic Software for Neurite Outgrowth Measurement

Musso G.
Membro del Collaboration Group
;
Dotta S.
Membro del Collaboration Group
;
Parmar A.
Membro del Collaboration Group
;
Rasa D. M.
Membro del Collaboration Group
;
Di Cunto F.
Membro del Collaboration Group
;
Marvaldi L.
Last
Membro del Collaboration Group
2024-01-01

Abstract

Effective live-imaging techniques are crucial to assess neuronal morphology in order to measure neurite outgrowth in real time. The proper measurement of neurite outgrowth has been a long-standing challenge over the years in the neuroscience research field. This parameter serves as a cornerstone in numerous in vitro experimental setups, ranging from dissociated cultures and organotypic cultures to cell lines. By quantifying the neurite length, it is possible to determine if a specific treatment worked or if axonal regeneration is enhanced in different experimental groups. In this study, the aim is to demonstrate the robustness and accuracy of the Incucyte Neurotrack neurite outgrowth analysis software. This semi-automatic software is available in a time-lapse microscopy system which offers several advantages over commonly used methodologies in the quantification of the neurite length in phase contrast images. The algorithm masks and quantifies several parameters in each image and returns neuronal cell metrics, including neurite length, branch points, cell-body clusters, and cell-body cluster areas. Firstly, we validated the robustness and accuracy of the software by correlating its values with those of the manual NeuronJ, a Fiji plugin. Secondly, we used the algorithm which is able to work both on phase contrast images as well as on immunocytochemistry images. Using specific neuronal markers, we validated the feasibility of the fluorescence-based neurite outgrowth analysis on sensory neurons in vitro cultures. Additionally, this software can measure neurite length across various seeding conditions, ranging from individual cells to complex neuronal nets. In conclusion, the software provides an innovative and time-effective platform for neurite outgrowth assays, paving the way for faster and more reliable quantifications.
2024
e67163
210
1
28
Musso G.; Dotta S.; Parmar A.; Rasa D.M.; Di Cunto F.; Marvaldi L.
File in questo prodotto:
File Dimensione Formato  
jove-protocol-67163-author-spotlight-unveiling-molecular-basis-pain-perception-5.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 5.28 MB
Formato Adobe PDF
5.28 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2019432
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact