The relationship between the polymer orientation and the chaotic flow, in a dilute solution of rigid rodlike polymers at low Reynolds number, is investigated by means of direct numerical simulations. It is found that the rods tend to align with the velocity field in order to minimize the friction with the solvent fluid, while regions of rotational disorder are related to strong vorticity gradients, and therefore to the chaotic flow. The "turbulent-like" behavior of the system is therefore associated with the emergence and interaction of topological defects of the mean director field, similarly to active nematic turbulence. The analysis has been carried out in both two and three spatial dimensions.

Orientational order and topological defects in a dilute solutions of rodlike polymers at low Reynolds number

Musacchio, S.
Last
2024-01-01

Abstract

The relationship between the polymer orientation and the chaotic flow, in a dilute solution of rigid rodlike polymers at low Reynolds number, is investigated by means of direct numerical simulations. It is found that the rods tend to align with the velocity field in order to minimize the friction with the solvent fluid, while regions of rotational disorder are related to strong vorticity gradients, and therefore to the chaotic flow. The "turbulent-like" behavior of the system is therefore associated with the emergence and interaction of topological defects of the mean director field, similarly to active nematic turbulence. The analysis has been carried out in both two and three spatial dimensions.
2024
110
1
015104-1
015104-12
Puggioni, L.; Musacchio, S.
File in questo prodotto:
File Dimensione Formato  
2312.16873v1.pdf

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 2.37 MB
Formato Adobe PDF
2.37 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2020550
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact