We prove that any regular domain in Minkowski space is uniquely foliated by spacelike constant mean curvature (CMC) hypersurfaces. This completes the classification of entire spacelike CMC hypersurfaces in Minkowski space initiated by Choi and Treibergs. As an application, we prove that any entire surface of constant Gaussian curvature in 2+1 dimensions is isometric to a straight convex domain in the hyperbolic plane.
Complete CMC hypersurfaces in Minkowski (n + 1)-space
Seppi A.;
2023-01-01
Abstract
We prove that any regular domain in Minkowski space is uniquely foliated by spacelike constant mean curvature (CMC) hypersurfaces. This completes the classification of entire spacelike CMC hypersurfaces in Minkowski space initiated by Choi and Treibergs. As an application, we prove that any entire surface of constant Gaussian curvature in 2+1 dimensions is isometric to a straight convex domain in the hyperbolic plane.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.