This work presents a model combining the simplest communicable and non-communicable disease models. The latter is, by far, the leading cause of sickness and death in the World, and introduces basal heterogeneity in populations where communicable diseases evolve. The model can be interpreted as a risk-structured model, another way of accounting for population heterogeneity. Our results show that considering the non-communicable disease (in the end, a dynamic heterogeneous population) allows the communicable disease to become endemic even if the basic reproduction number is less than 1. This feature is known as subcritical bifurcation. Furthermore, ignoring the non-communicable disease dynamics results in overestimating the basic reproduction number and, thus, giving wrong information about the actual number of infected individuals. We calculate sensitivity indices and derive interesting epidemic-control information.

A Minimal Model Coupling Communicable and Non-Communicable Diseases

Venturino, E.;
2023-01-01

Abstract

This work presents a model combining the simplest communicable and non-communicable disease models. The latter is, by far, the leading cause of sickness and death in the World, and introduces basal heterogeneity in populations where communicable diseases evolve. The model can be interpreted as a risk-structured model, another way of accounting for population heterogeneity. Our results show that considering the non-communicable disease (in the end, a dynamic heterogeneous population) allows the communicable disease to become endemic even if the basic reproduction number is less than 1. This feature is known as subcritical bifurcation. Furthermore, ignoring the non-communicable disease dynamics results in overestimating the basic reproduction number and, thus, giving wrong information about the actual number of infected individuals. We calculate sensitivity indices and derive interesting epidemic-control information.
2023
18
1
17
Non-communicable disease; communicable disease; basic reproduction number; subcritical bifurcation; heterogeneous populations; syndemics
Marvá, M.; Venturino, E.; Vera, M.C.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2021450
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact