We deal with Bayesian model selection for beta autoregressive processes. We discuss the choice of parameter and model priors with possible parameter restrictions and suggest a Reversible Jump Markov-Chain Monte Carlo (RJMCMC) procedure based on a Metropolis-Hastings within Gibbs algorithm
Bayesian Model Selection for Beta Autoregressive Processes
Dalla Valle L;
2012-01-01
Abstract
We deal with Bayesian model selection for beta autoregressive processes. We discuss the choice of parameter and model priors with possible parameter restrictions and suggest a Reversible Jump Markov-Chain Monte Carlo (RJMCMC) procedure based on a Metropolis-Hastings within Gibbs algorithmFile in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
BA_final.pdf
Accesso riservato
Dimensione
1.93 MB
Formato
Adobe PDF
|
1.93 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.