We deal with Bayesian model selection for beta autoregressive processes. We discuss the choice of parameter and model priors with possible parameter restrictions and suggest a Reversible Jump Markov-Chain Monte Carlo (RJMCMC) procedure based on a Metropolis-Hastings within Gibbs algorithm

Bayesian Model Selection for Beta Autoregressive Processes

Dalla Valle L;
2012-01-01

Abstract

We deal with Bayesian model selection for beta autoregressive processes. We discuss the choice of parameter and model priors with possible parameter restrictions and suggest a Reversible Jump Markov-Chain Monte Carlo (RJMCMC) procedure based on a Metropolis-Hastings within Gibbs algorithm
2012
7
2
385
410
https://projecteuclid.org/download/pdfview_1/euclid.ba/1339878893
Bayesian Inference; Beta Autoregressive Processes; Reversible Jump MCMC
Casarin R; Dalla Valle L; Leisen F
File in questo prodotto:
File Dimensione Formato  
BA_final.pdf

Accesso riservato

Dimensione 1.93 MB
Formato Adobe PDF
1.93 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2025101
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact