We explored the possibility to guide the forming process in a Ta/TiO2/Pt memristive device using an X-ray nanopatterning procedure, which enables the manipulation of the oxygen content at the nanoscale. The irradiation of selected areas of the sample by a 65 x 58 nm2 synchrotron X-ray nanobeam locally generated oxygen vacancies which resulted in the formation of a conductive filament in the desired position in the material. The subsequent application of an electric field between the electrodes was exploited to achieve reversible bipolar resistive switching. A multitechnique characterization was then performed, highlighting a local increase in the height of the crystal and the formation of a dislocation network, associated with the presence of Wadsley defects. Our results show that X-ray nanopatterning could open new avenues for a more deterministic implementation of electroforming in oxide-based memristive devices.We tuned the oxygen content in a Ta/TiO2/Pt memristive device at the nanoscale by a synchrotron X-ray nanobeam. We obtained a conductive filament of oxygen vacancies in the desired position in the material to achieve a controlled resistive switching.

Improving the control of the electroforming process in oxide-based memristive devices by X-ray nanopatterning

Mino, Lorenzo
First
;
Alessio, Andrea;Picollo, Federico;Truccato, Marco
Last
2024-01-01

Abstract

We explored the possibility to guide the forming process in a Ta/TiO2/Pt memristive device using an X-ray nanopatterning procedure, which enables the manipulation of the oxygen content at the nanoscale. The irradiation of selected areas of the sample by a 65 x 58 nm2 synchrotron X-ray nanobeam locally generated oxygen vacancies which resulted in the formation of a conductive filament in the desired position in the material. The subsequent application of an electric field between the electrodes was exploited to achieve reversible bipolar resistive switching. A multitechnique characterization was then performed, highlighting a local increase in the height of the crystal and the formation of a dislocation network, associated with the presence of Wadsley defects. Our results show that X-ray nanopatterning could open new avenues for a more deterministic implementation of electroforming in oxide-based memristive devices.We tuned the oxygen content in a Ta/TiO2/Pt memristive device at the nanoscale by a synchrotron X-ray nanobeam. We obtained a conductive filament of oxygen vacancies in the desired position in the material to achieve a controlled resistive switching.
2024
12
29
11127
11132
https://pubs.rsc.org/en/content/articlehtml/2024/tc/d4tc01815j
X-ray nanopatterning, memristor, electroforming, Wadsley defects, rutile, TiO2
Mino, Lorenzo; Bonino, Valentina; Alessio, Andrea; Picollo, Federico; Kuncser, Andrei; Mercioniu, Ionel; Vlaicu, Aurel-Mihai; Badica, Petre; Brescia, ...espandi
File in questo prodotto:
File Dimensione Formato  
Finally published file.pdf

Accesso aperto

Descrizione: Articolo publicato in forma finale
Tipo di file: PDF EDITORIALE
Dimensione 2.04 MB
Formato Adobe PDF
2.04 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2026650
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact