We report on an observational campaign on the bright black hole (BH) X-ray binary Swift J1727.8-1613 centered around five observations by the Imaging X-ray Polarimetry Explorer. These observations track for the first time the evolution of the X-ray polarization of a BH X-ray binary across a hard to soft state transition. The 2-8 keV polarization degree decreased from ∼4% to ∼3% across the five observations, but the polarization angle remained oriented in the north-south direction throughout. Based on observations with the Australia Telescope Compact Array, we find that the intrinsic 7.25 GHz radio polarization aligns with the X-ray polarization. Assuming the radio polarization aligns with the jet direction (which can be tested in the future with higher-spatial-resolution images of the jet), our results imply that the X-ray corona is extended in the disk plane, rather than along the jet axis, for the entire hard intermediate state. This in turn implies that the long (≳10 ms) soft lags that we measure with the Neutron star Interior Composition ExploreR are dominated by processes other than pure light-crossing delays. Moreover, we find that the evolution of the soft lag amplitude with spectral state does not follow the trend seen for other sources, implying that Swift J1727.8-1613 is a member of a hitherto undersampled subpopulation.
Tracking the X-Ray Polarization of the Black Hole Transient Swift J1727.8-1613 during a State Transition
Tugliani S.;Bonino R.;Massaro F.;
2024-01-01
Abstract
We report on an observational campaign on the bright black hole (BH) X-ray binary Swift J1727.8-1613 centered around five observations by the Imaging X-ray Polarimetry Explorer. These observations track for the first time the evolution of the X-ray polarization of a BH X-ray binary across a hard to soft state transition. The 2-8 keV polarization degree decreased from ∼4% to ∼3% across the five observations, but the polarization angle remained oriented in the north-south direction throughout. Based on observations with the Australia Telescope Compact Array, we find that the intrinsic 7.25 GHz radio polarization aligns with the X-ray polarization. Assuming the radio polarization aligns with the jet direction (which can be tested in the future with higher-spatial-resolution images of the jet), our results imply that the X-ray corona is extended in the disk plane, rather than along the jet axis, for the entire hard intermediate state. This in turn implies that the long (≳10 ms) soft lags that we measure with the Neutron star Interior Composition ExploreR are dominated by processes other than pure light-crossing delays. Moreover, we find that the evolution of the soft lag amplitude with spectral state does not follow the trend seen for other sources, implying that Swift J1727.8-1613 is a member of a hitherto undersampled subpopulation.File | Dimensione | Formato | |
---|---|---|---|
Ingram_2024_ApJ_968_76.pdf
Accesso aperto
Dimensione
1.33 MB
Formato
Adobe PDF
|
1.33 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.