Purpose: Radiation doses to adult patients submitted to cerebral angiography and intracranial aneurysms treatments were assessed by using DICOM Radiation Dose Structured Reports (RDSR) and Monte Carlo simulations. Conversion factors to estimate effective and organ doses from Kerma-Area Product (PKA) values were determined. Methods: 77 cerebral procedures performed with five angiographic equipment installed in three Italian centres were analyzed. Local settings and acquisition protocols were considered. The geometrical, technical and dosimetric data of 16,244 irradiation events (13305 fluoroscopy, 2811 digital subtraction angiography, 128 cone-beam CT) were extracted from RDSRs by local dose monitoring systems and were input in MonteCarlo PCXMC software to calculate effective and organ doses. Finally, conversion factors to determine effective and organ doses from PKA were determined. Differences between centres were assessed through statistical analysis and accuracy of dose calculation method based on conversion factors was assessed through Bland-Altman analysis. Results: Large variations in PKA (14–561 Gycm2) and effective dose (1.2–73.5 mSv) were observed due to different degrees of complexity in the procedures and angiographic system technology. The most exposed organs were brain, salivary glands, oral mucosa, thyroid and skeleton. The study highlights the importance of recent technology in reducing patient exposure (about fourfold, even more in DSA). No statistically significant difference was observed in conversion factors between centres, except for some organs. A conversion factor of 0.09 ± 0.02 mSv/Gycm2 was obtained for effective dose. Conclusions: Organ and effective doses were assessed for neuro-interventional procedures. Conversion factors for calculating effective and organ doses from PKA were provided.

Effective and organ doses in patient undergoing interventional neuroradiology procedures: A multicentre study

Dalmasso F.;Cannillo B.;
2024-01-01

Abstract

Purpose: Radiation doses to adult patients submitted to cerebral angiography and intracranial aneurysms treatments were assessed by using DICOM Radiation Dose Structured Reports (RDSR) and Monte Carlo simulations. Conversion factors to estimate effective and organ doses from Kerma-Area Product (PKA) values were determined. Methods: 77 cerebral procedures performed with five angiographic equipment installed in three Italian centres were analyzed. Local settings and acquisition protocols were considered. The geometrical, technical and dosimetric data of 16,244 irradiation events (13305 fluoroscopy, 2811 digital subtraction angiography, 128 cone-beam CT) were extracted from RDSRs by local dose monitoring systems and were input in MonteCarlo PCXMC software to calculate effective and organ doses. Finally, conversion factors to determine effective and organ doses from PKA were determined. Differences between centres were assessed through statistical analysis and accuracy of dose calculation method based on conversion factors was assessed through Bland-Altman analysis. Results: Large variations in PKA (14–561 Gycm2) and effective dose (1.2–73.5 mSv) were observed due to different degrees of complexity in the procedures and angiographic system technology. The most exposed organs were brain, salivary glands, oral mucosa, thyroid and skeleton. The study highlights the importance of recent technology in reducing patient exposure (about fourfold, even more in DSA). No statistically significant difference was observed in conversion factors between centres, except for some organs. A conversion factor of 0.09 ± 0.02 mSv/Gycm2 was obtained for effective dose. Conclusions: Organ and effective doses were assessed for neuro-interventional procedures. Conversion factors for calculating effective and organ doses from PKA were provided.
2024
122
Article number 103383
1
8
Conversion factors; Dosimetry; Effective/organ dose; Interventional neuroradiology
D'Alessio A.; Strocchi S.; Dalmasso F.; Cannillo B.; Matheoud R.; Ponzetti A.; Aimonetto S.; Cernigliaro M.; Azzalin G.; Giorgianni A.; Natrella M.; C...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2027914
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact