On 2021 September 28, a C1.6 class flare occurred in active region NOAA 12871, located approximately at 27°S and 51°W on the solar disk with respect to Earth’s point of view. This event was followed by a partial halo coronal mass ejection (CME) that caused the deflection of preexisting coronal streamer structures, as observed in visible-light coronagraphic images. An associated type II radio burst was also detected by both space- and ground-based instruments, indicating the presence of a coronal shock propagating into interplanetary space. By using H i Lyα (121.6 nm) observations from the Metis coronagraph on board the Solar Orbiter mission, we demonstrate for the first time the capability of UV imaging to provide, via a Doppler dimming technique, an upper limit estimate of the evolution of the 2D proton kinetic temperature in the CME-driven shock sheath as it passes through the field of view of the instrument. Our results suggest that over the 22 minutes of observations, the shock propagated with a speed decreasing from about 740 ± 110 km s−1 to 400 ± 60 km s−1. At the same time, the postshock proton temperatures peaked at latitudes around the shock nose and decreased with time from about 6.8 ± 1.01 MK to 3.1 ± 0.47 MK. The application of the Rankine-Hugoniot jump conditions demonstrates that these temperatures are higher by a factor of about 2-5 than those expected from simple adiabatic compression, implying that significant shock heating is still going on at these distances.

Study of Plasma Heating Processes in a Coronal Mass Ejection-driven Shock Sheath Region Observed with the Metis Coronagraph

Frassati F.;Bemporad A.;Mancuso S.;Zangrilli L.
2024-01-01

Abstract

On 2021 September 28, a C1.6 class flare occurred in active region NOAA 12871, located approximately at 27°S and 51°W on the solar disk with respect to Earth’s point of view. This event was followed by a partial halo coronal mass ejection (CME) that caused the deflection of preexisting coronal streamer structures, as observed in visible-light coronagraphic images. An associated type II radio burst was also detected by both space- and ground-based instruments, indicating the presence of a coronal shock propagating into interplanetary space. By using H i Lyα (121.6 nm) observations from the Metis coronagraph on board the Solar Orbiter mission, we demonstrate for the first time the capability of UV imaging to provide, via a Doppler dimming technique, an upper limit estimate of the evolution of the 2D proton kinetic temperature in the CME-driven shock sheath as it passes through the field of view of the instrument. Our results suggest that over the 22 minutes of observations, the shock propagated with a speed decreasing from about 740 ± 110 km s−1 to 400 ± 60 km s−1. At the same time, the postshock proton temperatures peaked at latitudes around the shock nose and decreased with time from about 6.8 ± 1.01 MK to 3.1 ± 0.47 MK. The application of the Rankine-Hugoniot jump conditions demonstrates that these temperatures are higher by a factor of about 2-5 than those expected from simple adiabatic compression, implying that significant shock heating is still going on at these distances.
2024
964
1 - Article number 15
1
11
Frassati F.; Bemporad A.; Mancuso S.; Giordano S.; Andretta V.; Burtovoi A.; Da Deppo V.; Fineschi S.; Grimani C.; Guglielmino S.; Heinzel P.; Jerse G...espandi
File in questo prodotto:
File Dimensione Formato  
Frassati_2024_ApJ_964_15.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 11.13 MB
Formato Adobe PDF
11.13 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2028055
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact